Fractal Geometry, Dynamical systems and number theory.
分形几何、动力系统和数论。
基本信息
- 批准号:RGPIN-2019-03930
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in fractal geometry and dynamical systems use techniques from number theory. I have listed three such types of problems. Topology of self-similar sets. Let f1, f2, ..., fn be a finite set of linear contractions. There exists a unique non-empty compact set K such that K = f1(K) union ... union fn(K). The set of contractions is called an iterated function system, and K is the associated self-similar set. A simple special case of these iterated function systems is the case when we have only two maps, from R2 to R2, with f1(x) = A x + b and f2(x) = A x - b. There are many interesting questions that are quite difficult to answer. For example, what conditions are needed on A so that the resulting self-similar set is connected, totally disconnected, or contains non-trivial interior? Dimensions of self-similar measures If we assign non-zero probabilities to the linear contractions in an iterated function system, we construct something known as a self-similar measures. A lot is known about the multi-fractal analysis, the local dimension and the structure of these measures in the case where the underlying linear contractions satisfies the open set condition. This is a condition that ensures that fi(K) and fj(K) do not have any non-trivial overlap. In the case where there is significant overlap, much less is known. One situation where things can be said is in the case where the self-similar measure satisfies the finite type condition. Self-similar measures with the finite type condition have a very precise combinatorial structure embedded into the construction of the associated self-similar measure. Such combinatorial structures allow for general computational techniques to be applied. Maps with holes A last question of interest is typically classified as "maps with holes". Consider an idealized game of billiards played on a table of some fixed shape, and a hole somewhere on this table. Given this game of billiards, we now consider a billiard ball, starting from a random location, and traveling in a random direction. Some typical questions one might ask are: What is the probabilities that the billiard ball falls in the hole, or instead avoids the hole forever? If the ball falls into the hole, what is the expected time until it falls into the hole? It is possible that the set of random location/directions that avoid the hole have measure 0, but might still have a positive Hausdorff dimension. What can be said about this dimension? The setting we are looking at is more abstract, dealing with discrete dynamical systems instead of the continuous ones in the billiard game, but the underlying questions remain the same. This helps to shed light on to which results are specific to continuous systems, and which are more general results with wider reaching implications.
分形几何和动力系统中的许多问题都使用数论中的技术。我列举了三种类型的问题。自相似集的拓扑。令f1,f2,.,fn是线性压缩的有限集合。存在唯一的非空紧集K使得K = f1(K)并.联合fn(K)。压缩集称为迭代函数系统,K是相关的自相似集。 这些迭代函数系统的一个简单特例是当我们只有两个映射时的情况,从R2到R2,其中f1(x)= Ax + B和f2(x)= Ax- B。有许多有趣的问题很难回答。例如,在A上需要什么样的条件,使得所得到的自相似集是连通的、完全不连通的或包含非平凡内部? 自相似测度的维数如果我们给迭代函数系统中的线性压缩分配非零概率,我们就构造了一个称为自相似测度的东西。许多已知的多重分形分析,局部维数和结构的情况下,这些措施的基本线性压缩满足开集条件。这是确保fi(K)和fj(K)不具有任何非平凡重叠的条件。在存在重大重叠的情况下,所知的要少得多。可以说的一种情况是自相似测度满足有限型条件的情况。有限型条件下的自相似测度具有嵌入到相关自相似测度的构造中的非常精确的组合结构。这样的组合结构允许应用一般的计算技术。 最后一个感兴趣的问题通常被归类为“有洞的地图”。考虑一个理想化的台球游戏,在一张固定形状的桌子上玩,桌子上的某个地方有一个洞。给定这个台球游戏,我们现在考虑一个台球,从一个随机的位置开始,并朝着一个随机的方向运动。人们可能会问的一些典型问题是:台球福尔斯落入球洞或永远避开球洞的概率是多少?如果球福尔斯落入球洞,预计球福尔斯何时落入球洞?可能的是,避免孔的随机位置/方向的集合具有测量0,但可能仍然具有正的豪斯多夫维数。关于这个方面可以说些什么呢? 我们正在研究的环境更加抽象,处理的是离散动力系统,而不是台球游戏中的连续动力系统,但基本问题仍然是相同的。这有助于阐明哪些结果是特定于连续系统的,哪些是具有更广泛影响的更一般的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hare, Kevin其他文献
Hare, Kevin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hare, Kevin', 18)}}的其他基金
Fractal Geometry, Dynamical systems and number theory.
分形几何、动力系统和数论。
- 批准号:
RGPIN-2019-03930 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Fractal Geometry, Dynamical systems and number theory.
分形几何、动力系统和数论。
- 批准号:
RGPIN-2019-03930 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Fractal Geometry, Dynamical systems and number theory.
分形几何、动力系统和数论。
- 批准号:
RGPIN-2019-03930 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Problems in Computational Number Theory
计算数论中的问题
- 批准号:
RGPIN-2014-04154 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Problems in Computational Number Theory
计算数论中的问题
- 批准号:
RGPIN-2014-04154 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Problems in Computational Number Theory
计算数论中的问题
- 批准号:
RGPIN-2014-04154 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Problems in Computational Number Theory
计算数论中的问题
- 批准号:
RGPIN-2014-04154 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Problems in Computational Number Theory
计算数论中的问题
- 批准号:
RGPIN-2014-04154 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Problems in computational number theory
计算数论中的问题
- 批准号:
283203-2009 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Problems in computational number theory
计算数论中的问题
- 批准号:
283203-2009 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Dynamical Systems and Fractal Geometry
会议:动力系统和分形几何
- 批准号:
2402022 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Fractal Geometry, Dynamical systems and number theory.
分形几何、动力系统和数论。
- 批准号:
RGPIN-2019-03930 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Fractal Geometry, Dynamical systems and number theory.
分形几何、动力系统和数论。
- 批准号:
RGPIN-2019-03930 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Research on random real and complex dynamical systems, semigroups of holomorphic maps and fractal geometry
随机实复杂动力系统、全纯映射半群和分形几何研究
- 批准号:
19H01790 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fractal Geometry, Dynamical systems and number theory.
分形几何、动力系统和数论。
- 批准号:
RGPIN-2019-03930 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Research on holomorphic mappings semigroups, random complex dynamical systems and fractal geometry
全纯映射半群、随机复杂动力系统和分形几何研究
- 批准号:
15K04899 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computability and Randomness in Dynamical Systems and Fractal Geometry
动力系统和分形几何中的可计算性和随机性
- 批准号:
1201263 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Fractal Geometry and Dynamical Systems, with Applications
分形几何和动力系统及其应用
- 批准号:
1107750 - 财政年份:2011
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Dynamical systems and fractal geometry/ quantum mechanics
动力系统和分形几何/量子力学
- 批准号:
106270-1994 - 财政年份:1996
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Dynamical systems and fractal geometry/ quantum mechanics
动力系统和分形几何/量子力学
- 批准号:
106270-1994 - 财政年份:1995
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual