A model predictive early warning system for disturbance type faults

扰动型故障模型预测预警系统

基本信息

  • 批准号:
    RGPIN-2019-04314
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Fault detection and diagnosis (FDD) systems are an integral part of modern process plants. Traditionally, FDD systems generate an alarm only after the actual signal or the processed signal has crossed the threshold. Though this is a robust approach, in some cases it may be too late to make any amendments to the system. The goal of this research program is to incorporate predictive features in FDD systems for early warning, to give operators sufficient time to take corrective actions. In the proposed research, we focus on disturbance-type faults. Process systems are prone to disturbances: some of them are measured while others are unmeasured. Disturbances perturb process systems gradually; the effect of a disturbance can be predicted before its impact is fully felt in the process. We propose a new framework for FDD that will estimate an unknown disturbance entering into a process system, predict its impact on the system, and finally issue an alarm if the impact is deemed significant. The proposed predictive fault detection and diagnosis framework consists of two modules: (i) simultaneous input and state estimation (SISE) module, and (ii) a moving horizon prediction and feasibility analysis module. Disturbances entering process systems, as well as other states within the system, are usually unmeasured. The SISE module will estimate both the unknown states and the disturbance entering the system. An expectation maximization (EM) algorithm will be used to iteratively estimate the states and the unknown disturbance magnitude. The EM algorithm has excellent statistical properties and guarantees convergence. Based on the estimated disturbance magnitude, system model, and available measurements, the future states of the system will be predicted using a moving horizon predictor. Finally, feasibility analysis will be carried out to determine if there is sufficient capacity in the actuators to counteract the disturbance effects and keep the outputs within the operational constraints. An alarm will be issued if there is no feasible solution. The novel FDD system is expected to issue an alarm earlier than the traditional alarm systems. It will make process industries, as well as many other industries, safer and improve the efficiency of operation by providing early indications of faults. Through this research program, two PhD and two Master's students will be trained. They will gain knowledge on the theory and applications of process monitoring and control and hands-on training on industry standard distributed control systems (DCS) and supervisory control and data acquisition (SCADA) system. These are highly sought after skills in Canadian industries. Thus, the proposed research program will contribute significantly to Canadian economy.
故障检测和诊断(FDD)系统是现代流程工厂不可或缺的一部分。传统上,FDD系统只有在实际信号或处理后的信号超过阈值后才会发出警报。虽然这是一种强有力的方法,但在某些情况下,对该制度进行任何修改可能为时已晚。这项研究计划的目标是在FDD系统中加入预测功能以进行早期预警,让运营商有足够的时间采取纠正措施。在所提出的研究中,我们将重点放在干扰型故障上。过程系统容易受到干扰:其中一些是可测量的,而另一些则是不可测量的。干扰逐渐扰乱过程系统;在过程中充分感受到干扰的影响之前,可以预测干扰的影响。我们提出了一种新的FDD框架,它将估计进入过程系统的未知干扰,预测其对系统的影响,并在影响被认为严重时发出警报。所提出的预测故障检测与诊断框架由两个模块组成:(I)同时输入和状态估计(SISE)模块和(Ii)滚动预测和可行性分析模块。进入过程系统的干扰以及系统内的其他状态通常是不可测量的。SISE模块将估计未知状态和进入系统的干扰。将使用期望最大化(EM)算法来迭代估计状态和未知扰动幅度。EM算法具有良好的统计特性,保证了算法的收敛。基于估计的扰动大小、系统模型和可用的测量,将使用滚动水平预测器来预测系统的未来状态。最后,将进行可行性分析,以确定执行器中是否有足够的能力来抵消干扰影响,并将输出保持在操作约束范围内。如果没有可行的解决方案,就会发出警报。这种新型的FDD系统预计将比传统的报警系统更早地发出警报。它将使流程工业以及许多其他行业变得更安全,并通过提供故障的早期迹象来提高运行效率。通过该研究项目,将培养两名博士生和两名硕士生。他们将获得过程监测和控制的理论和应用方面的知识,以及关于工业标准分布式控制系统(DCS)和监控和数据采集(SCADA)系统的实践培训。这些技能在加拿大的行业中备受追捧。因此,拟议的研究计划将对加拿大经济做出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Imtiaz, Syed其他文献

Predictive warning system for nonlinear process plants
  • DOI:
    10.1016/j.jprocont.2021.01.008
  • 发表时间:
    2021-03-03
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Khan, Mohammad Aminul Islam;Imtiaz, Syed;Khan, Faisal
  • 通讯作者:
    Khan, Faisal
A novel data-driven methodology for fault detection and dynamic risk assessment
Fault detection and pathway analysis using a dynamic Bayesian network
  • DOI:
    10.1016/j.ces.2018.10.024
  • 发表时间:
    2019-02-23
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Amin, Md Tanjin;Khan, Faisal;Imtiaz, Syed
  • 通讯作者:
    Imtiaz, Syed
Retrospective risk analysis and controls for Semabla grain storage hybrid, mixture explosion
Human reliability assessment during offshore emergency conditions
  • DOI:
    10.1016/j.ssci.2013.04.001
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Musharraf, Mashrura;Hassan, Junaid;Imtiaz, Syed
  • 通讯作者:
    Imtiaz, Syed

Imtiaz, Syed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Imtiaz, Syed', 18)}}的其他基金

A model predictive early warning system for disturbance type faults
扰动型故障模型预测预警系统
  • 批准号:
    RGPIN-2019-04314
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A model predictive early warning system for disturbance type faults
扰动型故障模型预测预警系统
  • 批准号:
    RGPIN-2019-04314
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A model predictive early warning system for disturbance type faults
扰动型故障模型预测预警系统
  • 批准号:
    RGPIN-2019-04314
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a strategy for alarm management in petroleum refinery
炼油厂报警管理策略的制定
  • 批准号:
    536686-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Plus Grants Program
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
  • 批准号:
    RGPIN-2014-06651
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced alarm management system for pertroleum refinery
石油炼化先进报警管理系统
  • 批准号:
    517632-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
  • 批准号:
    RGPIN-2014-06651
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
  • 批准号:
    RGPIN-2014-06651
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated Subsea Pipeline Integrity Management using Real-time Condition Monitoring
使用实时状态监测进行综合海底管道完整性管理
  • 批准号:
    499959-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
  • 批准号:
    RGPIN-2014-06651
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
  • 批准号:
    10823917
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Data Management and Bioinformatics
数据管理和生物信息学
  • 批准号:
    10633367
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
PROgression of Tuberculosis infECTion in young children living with and without HIV: the PROTECT study
感染和未感染艾滋病毒的幼儿结核感染的进展:PROTECT 研究
  • 批准号:
    10641389
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Biomarker Discovery in Portopulmonary Hypertension
门脉性肺动脉高压的生物标志物发现
  • 批准号:
    10663708
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
  • 批准号:
    10753822
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Development of serologic test for early risk stratification of islet autoimmunity in genetically predisposed T1D individuals
开发用于遗传易感性 T1D 个体胰岛自身免疫早期风险分层的血清学检测
  • 批准号:
    10760885
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Detecting Adolescent Suicidality Biometric Signals and Dynamic Variability with Wearable Technology
利用可穿戴技术检测青少年自杀生物特征信号和动态变异性
  • 批准号:
    10731651
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
How reasoning contributes to preschoolers’ prosocial development
推理如何促进学龄前儿童亲社会发展
  • 批准号:
    10645706
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了