Visual Recognition Beyond Supervised Learning

超越监督学习的视觉识别

基本信息

  • 批准号:
    RGPIN-2019-05362
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

In the past few years, there has been significant improvement in the performance of various visual recognition tasks, such as image classification, object detection, semantic segmentation, etc. Most of the success is achieved by a "brute-force" fully supervised approach that learns deep neural network models using large-scale datasets with human annotations. However, this brute-force approach has several limitations that prevent the wide adoption of visual recognition technologies in many real-world applications. Learning these models requires access to large-scale labeled data which are often difficult to collect. Standard supervised learning algorithms usually do not take into account of previously learned knowledge and have to learn from scratch for every new task. The learned systems often do not generalize well to new scenarios. The long-term goal of my research program is to develop algorithms that make it far easier to learn visual recognition systems. We would like to be able to learn visual recognition systems from small data without too much human supervision, to learn new tasks quickly by leveraging previously learned knowledge, and to be able to actively explore and adapt to new environments. In other words, the goal is to move beyond supervised learning and move towards building visual recognition systems that are largely self-taught. Towards realizing this long-term goal, I propose several short-term objectives that I aim to achieve during the 5-year time frame of the proposal: (1) developing new techniques for knowledge transfer in visual recognition; (2) developing algorithms for visual recognition with weak supervision; (3) combining visual recognition and active exploration. This project will produce 16 HQP trained at different levels (PhD, MSc, BSc). These HQP will receive research training in computer vision, machine learning (especially deep learning), and software development. These skills are in high demand in Canada. Students leaving this research program will easily find employment in academia or industry. The proposed research will produce new knowledge that has important impact in terms of both fundamental scientific research and practical applications. The proposed research addresses some fundamental research questions in computer vision and machine learning, such as learning from small data, transfer learning, domain adaptation, weakly-supervised learning, active vision, etc. At the same time, this research has tremendous potential to impact how visual recognition is deployed in real-world applications.
在过去的几年里,各种视觉识别任务的性能有了显著的提高,如图像分类、对象检测、语义分割等,其中大部分成功是通过一种“蛮力”的全监督方法实现的,这种方法使用带有人类注释的大规模数据集来学习深度神经网络模型。然而,这种蛮力方法有几个限制,阻止了视觉识别技术在许多现实世界的应用中的广泛采用。学习这些模型需要访问大规模的标记数据,这些数据通常很难收集。标准的监督学习算法通常不考虑以前学习的知识,并且必须从头开始学习每个新任务。学习的系统通常不能很好地推广到新的场景。我的研究项目的长期目标是开发算法,使学习视觉识别系统变得更加容易。我们希望能够在没有太多人为监督的情况下从小数据中学习视觉识别系统,通过利用以前学到的知识快速学习新任务,并能够积极探索和适应新环境。换句话说,我们的目标是超越监督学习,转向构建基本上是自学的视觉识别系统。为了实现这一长期目标,我提出了几个短期目标,我的目标是在5年的时间框架内实现的建议:(1)开发新的技术,在视觉识别知识转移;(2)开发视觉识别算法与弱监督;(3)结合视觉识别和主动探索。该项目将培养16名不同级别的HQP(博士,硕士,理学学士)。这些HQP将接受计算机视觉,机器学习(特别是深度学习)和软件开发方面的研究培训。这些技能在加拿大需求量很大。离开这个研究项目的学生将很容易在学术界或工业界找到工作。拟议的研究将产生新的知识,在基础科学研究和实际应用方面都具有重要影响。拟议的研究解决了计算机视觉和机器学习中的一些基础研究问题,例如从小数据中学习,迁移学习,域适应,弱监督学习,主动视觉等,同时,这项研究具有巨大的潜力,可以影响视觉识别在现实世界中的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Yang其他文献

Face Verification with Multi-Task and Multi-Scale Feature Fusion
  • DOI:
    10.3390/e19050228
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Lu, Xiaojun;Yang, Yue;Wang, Yang
  • 通讯作者:
    Wang, Yang
Effects of moldy corn on the performance, antioxidant capacity, immune function, metabolism and residues of mycotoxins in eggs, muscle, and edible viscera of laying hens.
  • DOI:
    10.1016/j.psj.2023.102502
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Zhu, Fenghua;Zhu, Lianqin;Xu, Jindong;Wang, Yuchang;Wang, Yang
  • 通讯作者:
    Wang, Yang
Fabrication of GO-Ag/PVDF/F127 modified membrane IPA coagulation bath for catalytic reduction of 4-nitrophenol
  • DOI:
    10.1016/j.seppur.2019.116143
  • 发表时间:
    2020-03-18
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Wang, Yang;Chen, Gui-E;Mao, Hai-Fang
  • 通讯作者:
    Mao, Hai-Fang
Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin
家畜源性大肠杆菌中葡萄球菌多重耐药基因cfr的检测
  • DOI:
    10.1093/jac/dks020
  • 发表时间:
    2012-05-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Wang, Yang;He, Tao;Shen, Jianzhong
  • 通讯作者:
    Shen, Jianzhong
Enduracidin analogues with altered halogenation patterns produced by genetically engineered strains of Streptomyces fungicidicus.
  • DOI:
    10.1021/np900710q
  • 发表时间:
    2010-04-23
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Yin, Xihou;Chen, Ying;Zhang, Ling;Wang, Yang;Zabriskie, T. Mark
  • 通讯作者:
    Zabriskie, T. Mark

Wang, Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Yang', 18)}}的其他基金

Visual Recognition Beyond Supervised Learning
超越监督学习的视觉识别
  • 批准号:
    RGPIN-2019-05362
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Visual Recognition Beyond Supervised Learning
超越监督学习的视觉识别
  • 批准号:
    RGPIN-2019-05362
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Visual Recognition Beyond Supervised Learning
超越监督学习的视觉识别
  • 批准号:
    RGPIN-2019-05362
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Object tracking and segmentation in videos
视频中的对象跟踪和分割
  • 批准号:
    522300-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Understanding Humans in Images and Videos
了解图像和视频中的人类
  • 批准号:
    435401-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding Humans in Images and Videos
了解图像和视频中的人类
  • 批准号:
    435401-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning for visual inspection systems
视觉检测系统的机器学习
  • 批准号:
    514591-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Object detection from security cameras for smart homes
智能家居安全摄像头的物体检测
  • 批准号:
    500888-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Understanding Humans in Images and Videos
了解图像和视频中的人类
  • 批准号:
    435401-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding Humans in Images and Videos
了解图像和视频中的人类
  • 批准号:
    435401-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Recognition-VR 虚拟现实的“家庭-社区-医院三向联动”轻度认知障碍防治模式研究
  • 批准号:
    2021JJ60094
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Revisiting Domain Adaptation in Video, within and Beyond Recognition
重新审视视频中的领域适应,在识别之内和之外
  • 批准号:
    2894961
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Visual Recognition Beyond Supervised Learning
超越监督学习的视觉识别
  • 批准号:
    RGPIN-2019-05362
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Visual Recognition Beyond Supervised Learning
超越监督学习的视觉识别
  • 批准号:
    RGPIN-2019-05362
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Visual Recognition Beyond Supervised Learning
超越监督学习的视觉识别
  • 批准号:
    RGPIN-2019-05362
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Beyond recognition: postcolonial relationality across difference
超越认知:跨越差异的后殖民关系
  • 批准号:
    IN180100055
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Indigenous
Ambivalent Recognition Order? Doing reproduction and doing family beyond the heterosexual nuclear family
矛盾的承认顺序?
  • 批准号:
    367423336
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grants
Evolutionary Reseach of Common Teaching Materials for Japan and Republic of Korea: Aiming at Shared Historical Recognition beyond National Histories
日韩共同教材的演化研究:以民族史之外的共同历史认知为目标
  • 批准号:
    16H03801
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Basic Research for the Development of Common Teaching Materials on East-Asian History at Schools in Japan and Korea: Aiming at Shared Historical Recognition beyond National Histories
日韩学校东亚史通用教材开发的基础研究:以民族史之外的共同历史认知为目标
  • 批准号:
    25285249
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
  • 批准号:
    10226268
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
  • 批准号:
    10468287
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了