Decision making problems in Actuarial Science

精算学中的决策问题

基本信息

  • 批准号:
    RGPIN-2019-06561
  • 负责人:
  • 金额:
    $ 1.17万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

In 2017, global insured losses from catastrophe (CAT) events were USD 144 billion (swiss Re), the highest-ever recorded in a single year. In Canada, the figure was about $1.33 billion (CatIQ). These losses cause serious capital shortage or even solvency problems for insurance companies. Therefore, it is extremely important for insurance companies to hedge these risks. Without proper hedging arrangements, insurance companies may become insolvent, the public exposed risks may not have their claims paid, or the government agencies may need to bail out one or more insurers at the ultimate expenses of the tax payers. The goal of this research program is to study the optimal approach to integrate the available hedging mechanisms to build an effective catastrophe risk management system that considers the interests of all stakeholders, including insureds, insurance companies, reinsurance companies, investors, and the government. Insurers' two commonly used mechanisms to hedge CAT risks are (1) purchasing conventional reinsurance coverages from reinsurers, where the indemnity is a function of the primary insurer's covered losses; and (2) purchasing catastrophe loss index securities from the financial market, where the indemnity is a function of certain CAT loss index, such as industry-wide losses. The question to ask is how to make best uses of such mechanisms. The optimal reinsurance problem is an old one. There are deep results in the literature about what kind of reinsurance coverages insurance companies should purchase and how much it should spend on such coverages. Famous economists such as K. Borch and K. J. Arrow argued that to minimize an insurer's risks, measured by variance, or to maximize its expected utility, the optimal reinsurance policy should have a stop-loss form, where the portion of losses above certain threshold is paid by the reinsurance company. The research area is still very active, with current focus on the format of optimal reinsurance when risks are measured by more modern solvency related risk measures such as Value at Risk (VaR) and Tail Value at Risk (TVaR). There are much fewer results on optimal contracts for CAT loss index-based securities in the literature. However, active researches are being performed around the world. A key insight is that researchers have been studying the optimal reinsurance contracts or index-based securities separately. It is likely much more effective to integrate these  different hedging mechanisms to build a risk management system. Thus, studying the optimal approach to do so is the goal of this research program. To reach the goal, we will combine classical decision-making theory with advanced engineering models of natural hazards, such as earthquakes, in Canada. This combination was made possible by our close collaborations with Western's Civil Engineering team. We believe that this research program will contribute to building an effective Canadian CAT risk management system.
2017年,全球巨灾(CAT)事件的保险损失为1440亿美元(瑞士再保险),是有史以来最高的一年。在加拿大,这一数字约为13.3亿美元(CatIQ)。这些损失给保险公司造成了严重的资本短缺甚至偿付能力问题。因此,保险公司对冲这些风险极为重要。如果没有适当的对冲安排,保险公司可能会破产,公众暴露的风险可能无法支付他们的索赔,或者政府机构可能需要救助一个或多个保险公司,最终费用由纳税人承担。本研究课题的目的是研究整合现有避险机制的最佳方法,以建立一个有效的巨灾风险管理系统,考虑所有利益相关者的利益,包括被保险人,保险公司,再保险公司,投资者和政府。 保险公司对冲巨灾风险的两种常用机制是:(1)从再保险公司购买传统的再保险承保范围,其中赔偿是主保险公司承保损失的函数;以及(2)从金融市场购买巨灾损失指数证券,其中赔偿是某些巨灾损失指数的函数,例如全行业损失。要问的问题是如何最好地利用这些机制。 最优再保险问题是一个古老的问题。关于保险公司应该购买什么样的再保险以及应该在这些保险上花费多少,文献中有很深的结论。著名经济学家K. Borch和K. J. Arrow认为,为了最小化保险公司的风险(用方差衡量),或者最大化其预期效用,最优再保险政策应该有一个止损形式,其中超过一定阈值的损失部分由再保险公司支付。该研究领域仍然非常活跃,目前的重点是最佳再保险的形式时,风险是衡量更现代的偿付能力相关的风险措施,如风险价值(VaR)和风险的尾部价值(TVaR)。在文献中,关于基于CAT损失指数的证券的最优合约的结果要少得多。然而,世界各地正在进行积极的研究。 一个关键的见解是,研究人员一直在研究最佳再保险合同或指数为基础的证券分开。整合这些不同的对冲机制来建立一个风险管理系统可能会更有效。因此,研究这样做的最佳方法是本研究计划的目标。 为了达到这个目标,我们将结合联合收割机经典的决策理论与先进的工程模型的自然灾害,如地震,在加拿大。这种结合是通过我们与西方的土木工程团队的密切合作而实现的。我们相信,这项研究计划将有助于建立一个有效的加拿大CAT风险管理系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ren, Jiandong其他文献

Assessment of Seismic Loss Dependence Using Copula
  • DOI:
    10.1111/j.1539-6924.2010.01408.x
  • 发表时间:
    2010-07-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Goda, Katsuichiro;Ren, Jiandong
  • 通讯作者:
    Ren, Jiandong
Hydrogen-rich saline reduces the oxidative stress and relieves the severity of trauma-induced acute pancreatitis in rats
Preparation and characterization of phosphopeptides from egg yolk phosvitin
  • DOI:
    10.1016/j.jff.2015.07.007
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Ren, Jiandong;Li, Qiyi;Wu, Jianping
  • 通讯作者:
    Wu, Jianping
Annular pancreas concurrent with pancreaticobiliary maljunction presented with symptoms until adult age: case report with comparative data on pediatric cases
  • DOI:
    10.1186/1471-230x-13-153
  • 发表时间:
    2013-10-25
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Cheng, Long;Tian, Fuzhou;Ren, Jiandong
  • 通讯作者:
    Ren, Jiandong

Ren, Jiandong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ren, Jiandong', 18)}}的其他基金

Decision making problems in Actuarial Science
精算学中的决策问题
  • 批准号:
    RGPIN-2019-06561
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Decision making problems in Actuarial Science
精算学中的决策问题
  • 批准号:
    RGPIN-2019-06561
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Decision making problems in Actuarial Science
精算学中的决策问题
  • 批准号:
    RGPIN-2019-06561
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Risk models based on Marked Markovian Arrival Processes
基于标记马尔可夫到达过程的风险模型
  • 批准号:
    RGPIN-2014-04701
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Risk models based on Marked Markovian Arrival Processes
基于标记马尔可夫到达过程的风险模型
  • 批准号:
    RGPIN-2014-04701
  • 财政年份:
    2017
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Risk models based on Marked Markovian Arrival Processes
基于标记马尔可夫到达过程的风险模型
  • 批准号:
    RGPIN-2014-04701
  • 财政年份:
    2016
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Risk models based on Marked Markovian Arrival Processes
基于标记马尔可夫到达过程的风险模型
  • 批准号:
    RGPIN-2014-04701
  • 财政年份:
    2015
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Variations of risk processes
风险流程的变化
  • 批准号:
    288271-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Variations of risk processes
风险流程的变化
  • 批准号:
    288271-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Variations of risk processes
风险流程的变化
  • 批准号:
    288271-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
  • 批准号:
    31170976
  • 批准年份:
    2011
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Decision-making problems considering two variables under ambiguity: theory and applications
考虑模糊条件下两个变量的决策问题:理论和应用
  • 批准号:
    23K01468
  • 财政年份:
    2023
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decision making problems in Actuarial Science
精算学中的决策问题
  • 批准号:
    RGPIN-2019-06561
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Solution of optimization problems for group decision making
群体决策优化问题的求解
  • 批准号:
    566661-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Alliance Grants
NRT-HDR Data Driven Decision Making to Address Complex Resource Problems
NRT-HDR 数据驱动决策以解决复杂的资源问题
  • 批准号:
    2021874
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
Decision making problems in Actuarial Science
精算学中的决策问题
  • 批准号:
    RGPIN-2019-06561
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
A Unified Multi-Stage Approach to Generalized Sequential Decision Making Problems with Covariates
协变量广义序列决策问题的统一多阶段方法
  • 批准号:
    1916376
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Continuing Grant
Decision making problems in Actuarial Science
精算学中的决策问题
  • 批准号:
    RGPIN-2019-06561
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Social and decision neuroscience of suicidal behavior
自杀行为的社会和决策神经科学
  • 批准号:
    9976611
  • 财政年份:
    2017
  • 资助金额:
    $ 1.17万
  • 项目类别:
Social and decision neuroscience of suicidal behavior
自杀行为的社会和决策神经科学
  • 批准号:
    9385188
  • 财政年份:
    2017
  • 资助金额:
    $ 1.17万
  • 项目类别:
Data driven decision making for complex problems
针对复杂问题的数据驱动决策
  • 批准号:
    DP170103174
  • 财政年份:
    2017
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了