A Unified Multi-Stage Approach to Generalized Sequential Decision Making Problems with Covariates
协变量广义序列决策问题的统一多阶段方法
基本信息
- 批准号:1916376
- 负责人:
- 金额:$ 16.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sequential decision making problems are commonly encountered optimization tasks with important modern applications. With rapid advances in data-driven technology, the diverse application examples include online service recommendation for smart phone users, intelligent implementation of intervention plans for medical service, automated financial service processing, and many others. Generally, faced with multiple decision arms, a service provider needs to choose one to be delivered for each upcoming service user, and targets to maximize the overall reward and benefits for all these service users. Furthermore, in this Big Data era, individual user covariates and metrics are often accessible to service providers, which holds great promise in personalized (mobile, medical, or business) service decision making to enhance user reward outcomes. This project will significantly advance the methods and theory for the sequential decision making problems with covariates, and address important questions that are also of interests to multiple statistics-related fields such as computer science, operations research, business analytics, health sciences, and broader machine learning communities. The promising use of personalized service will be promoted through close interdisciplinary collaborations with business and medical research communities. The graduate student supported by this grant will help with statistical theory, programming, and data analytics. Under both parametric and nonparametric frameworks, a unified multi-stage approach will be developed to optimally solve a series of generalized sequential decision making problem settings formulated as multi-armed stochastic bandit problems with covariates. In particular, the investigators aim to (1) develop a new algorithm to handle high-dimensional user covariates under assumptions much relaxed from existing work while improving performance; with integration of a class of high-dimensional regression methods and new technical tools for non-i.i.d. samples inherited from the algorithm, establish rigorous finite-time regret analysis and useful statistical properties; (2) propose a new nonparametric framework as the censored bandit problem with covariates and show optimal cumulative regret and flexible use with possibly censored reward response and non-linear decision boundary; (3) study a class of high-dimensional dimension reduction methods to mitigate curse of dimensionality issues in the nonparametric regression settings and significantly extend the use of classical nonparametric methods in high dimensional problems. Both theoretical and empirical studies to incorporate complex covariate structures inspired from business and medical research questions for decision making will create valuable training and research opportunities for graduate and undergraduate students. The graduate student supported by this grant will help with statistical theory, programming and data analytics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
顺序决策问题是现代重要应用中经常遇到的优化任务。随着数据驱动技术的快速发展,各种各样的应用实例包括智能手机用户的在线服务推荐、医疗服务干预计划的智能实施、金融服务自动化处理等。通常,面对多个决策臂,服务提供者需要为每个即将到来的服务用户选择一个要交付的决策臂,并以最大化所有这些服务用户的总体回报和利益为目标。此外,在这个大数据时代,服务提供商通常可以访问个人用户协变量和指标,这在个性化(移动、医疗或商业)服务决策中具有很大的前景,可以提高用户奖励结果。该项目将显著推进协变量序列决策问题的方法和理论,并解决多个统计相关领域(如计算机科学、运筹学、商业分析、健康科学和更广泛的机器学习社区)感兴趣的重要问题。将通过与商业和医学研究界的密切跨学科合作,促进个性化服务的前景。该奖学金资助的研究生将学习统计理论、编程和数据分析。在参数和非参数框架下,将发展一种统一的多阶段方法来最优解决一系列广义序列决策问题,这些问题被表述为带有协变量的多臂随机强盗问题。具体而言,研究人员的目标是(1)开发一种新的算法,在与现有工作大大放松的假设下处理高维用户协变量,同时提高性能;结合了一类高维回归方法和非i.d的新技术工具。从样本中继承算法,建立严格的有限时间后悔分析和有用的统计特性;(2)提出了一种新的非参数框架作为带协变量的删减盗匪问题,并在可能删减的奖励响应和非线性决策边界下表现出最优累积遗憾和灵活使用;(3)研究了一类高维降维方法,以缓解非参数回归设置中的维数问题,并显著扩展了经典非参数方法在高维问题中的应用。从商业和医学研究问题中获取决策灵感的复杂协变量结构的理论和实证研究将为研究生和本科生创造宝贵的培训和研究机会。该奖学金资助的研究生将学习统计理论、编程和数据分析。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combining forecasts for universally optimal performance
- DOI:10.1016/j.ijforecast.2021.05.004
- 发表时间:2021-06
- 期刊:
- 影响因子:7.9
- 作者:Wei Qian;Craig Rolling;Gang Cheng;Yuhong Yang
- 通讯作者:Wei Qian;Craig Rolling;Gang Cheng;Yuhong Yang
On the Forecast Combination Puzzle
- DOI:10.3390/econometrics7030039
- 发表时间:2015-05
- 期刊:
- 影响因子:1.5
- 作者:W. Qian;Craig Rolling;Gang Cheng;Yuhong Yang
- 通讯作者:W. Qian;Craig Rolling;Gang Cheng;Yuhong Yang
Adaptive Algorithm for Multi-Armed Bandit Problem with High-Dimensional Covariates
高维协变量多臂老虎机问题的自适应算法
- DOI:10.1080/01621459.2022.2152343
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Qian, Wei;Ing, Ching-Kang;Liu, Ji
- 通讯作者:Liu, Ji
Learning from Lending in the Interbank Network
向银行间网络借贷学习
- DOI:10.1080/26941899.2022.2151949
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Laux, Paul;Qian, Wei;Zhang, Haici
- 通讯作者:Zhang, Haici
A Unified Approach to Sparse Tweedie Modeling of Multisource Insurance Claim Data
- DOI:10.1080/00401706.2019.1647881
- 发表时间:2019-09
- 期刊:
- 影响因子:2.5
- 作者:Simon Fontaine;Yi Yang;W. Qian;Yuwen Gu;Bo Fan
- 通讯作者:Simon Fontaine;Yi Yang;W. Qian;Yuwen Gu;Bo Fan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Qian其他文献
Effect analysis of intradermal hyaluronic acid injection to treat enlarged facial pores
皮内注射玻尿酸治疗面部毛孔粗大效果分析
- DOI:
10.1111/jocd.12385 - 发表时间:
2018 - 期刊:
- 影响因子:2.3
- 作者:
Wei Qian;Yan;Ying Hou;Wei Lyu;Qian Cao;Yanqi Li;Ju - 通讯作者:
Ju
Trajectory Optimization-Based Auxiliary Power Unit Control Strategy for an Extended Range Electric Vehicle
基于轨迹优化的增程式电动汽车辅助动力单元控制策略
- DOI:
10.1109/tvt.2017.2725447 - 发表时间:
2017-07 - 期刊:
- 影响因子:6.8
- 作者:
Xi Zhang;Zixian Wu;Xiaosong Hu;Wei Qian;Zhe Li - 通讯作者:
Zhe Li
Ultra-Flattened Normal Dispersion Fiber for Supercontinuum and Dissipative Soliton Resonance Generation at 2 mu m
用于 2 μm 超连续谱和耗散孤子谐振生成的超扁平法向色散光纤
- DOI:
10.1109/jphot.2019.2915265 - 发表时间:
2019 - 期刊:
- 影响因子:2.4
- 作者:
Huang Tianye;Wei Qian;Wu Zhichao;Wu Xu;Huang Pan;Cheng Zhuo;Shum Perry Ping - 通讯作者:
Shum Perry Ping
Discriminative feature combination selection for enhancing multiclass classification
用于增强多类分类的判别性特征组合选择
- DOI:
10.1109/besc.2015.7365964 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Aibo Song;Wei Qian;Zhiang Wu;J. Zhao - 通讯作者:
J. Zhao
Effect of epoxy resin sealing on corrosion resistance of arc spraying aluminium coating using cathode electrophoresis method
环氧树脂封闭对阴极电泳电弧喷铝涂层耐蚀性的影响
- DOI:
10.1088/2053-1591/aaa055 - 发表时间:
2018-01 - 期刊:
- 影响因子:0
- 作者:
Pang Xuming;Wang Runqiu;Wei Qian;Zhou Jianxin - 通讯作者:
Zhou Jianxin
Wei Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
- 批准号:
10112787 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
EU-Funded
A Stage 1 Pilot Test for Feasibility and Efficacy of a Multi-Level Intervention To Increase Physical Activity in Adults with Intellectual Disability: Step it Up +
第一阶段试点测试多层次干预措施的可行性和有效性,以增加智力障碍成人的体力活动:加快步伐
- 批准号:
10585633 - 财政年份:2023
- 资助金额:
$ 16.58万 - 项目类别:
THz-driven multi-stage relativistic beamline design and beam dynamics
太赫兹驱动的多级相对论光束线设计和光束动力学
- 批准号:
2905219 - 财政年份:2023
- 资助金额:
$ 16.58万 - 项目类别:
Studentship
Non-Synchronous Vibration for High-Speed Multi-Stage Compressors
高速多级压缩机的非同步振动
- 批准号:
2859935 - 财政年份:2023
- 资助金额:
$ 16.58万 - 项目类别:
Studentship
Non-Contact Sleep Stage Estimation: Machine Learning in Multi-Imbalance Data for Improvements in Accuracy and Interpretability
非接触式睡眠阶段估计:多重不平衡数据中的机器学习,以提高准确性和可解释性
- 批准号:
22KJ1367 - 财政年份:2023
- 资助金额:
$ 16.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Generating a Skeleton Structure of a Humanoid Robot that Reproduces Human Movements Using Multi-stage CNN
使用多级 CNN 生成重现人类动作的人形机器人的骨骼结构
- 批准号:
23K16972 - 财政年份:2023
- 资助金额:
$ 16.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of hybrid multi-stage constructed wetlands based on indigenous adsorptive materials for sustainable heavy metal treatment from mine drainages in Japan
日本开发基于本土吸附材料的混合多阶段人工湿地,用于可持续处理矿山排水中的重金属
- 批准号:
23K20027 - 财政年份:2023
- 资助金额:
$ 16.58万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
FMRG: Cyber: Cyber-Coordinated Analytical Framework for Multi-stage Distributed Future Manufacturing Systems
FMRG:网络:多阶段分布式未来制造系统的网络协调分析框架
- 批准号:
2412020 - 财政年份:2023
- 资助金额:
$ 16.58万 - 项目类别:
Standard Grant
The Study of the paradox for multi-stage to the integration and small-size to big-size of wholesaler
批发商多级到一体化、小到大的悖论研究
- 批准号:
22K01777 - 财政年份:2022
- 资助金额:
$ 16.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a multi-component vaccine harnessing potent antibody and cellular responses against the blood-stage of Plasmodium falciparum
开发一种多成分疫苗,利用针对恶性疟原虫血液阶段的有效抗体和细胞反应
- 批准号:
10614511 - 财政年份:2022
- 资助金额:
$ 16.58万 - 项目类别: