Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
基本信息
- 批准号:RGPIN-2020-04661
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Signal processing along with the resurgent AI technology have become ubiquitous to process data from all types of sources. Many data, either from networked sources such as sensor networks and social networks or from other sources such as images and videos, contain explicit or implicit structured relationships that can be best represented by a graph. These types of network data pose new challenges to signal processing research. Recent signal processing and statistical modeling technologies for data with a graph structure mainly include a) graphical modeling and learning theory, and b) graph signal processing. However, these theories and methods have not been fully investigated under various constraints posed by emerging applications to solve problems such as localization and tracking, source identification, optimal filtering over networks. In addition, in many cases, identification or learning of the unknown or implicit network/graph structures is a very challenging problem. The overall objective of the proposed research is to systematically develop new signal and data processing theories and methods for data that have explicit, such as in sensor networks, or implicit, such as in videos, underlying nonlocal graph based relationships and/or dynamic information diffusion flow, and applications in sensor/social networks, 5G Internet of things (IoT) wireless networks, multimodality multimedia content analysis, and economic big data. Specific objectives are (i) to develop general network statistical signal processing and inference models and methods over a sensor network for dynamic multiple target localization and tracking; (ii)to identify original signal sources in the presence of noise and interference for data generated by a network information diffusion process, based on the graph shift operator theory, and to develop optimal filtering and prediction methods over the network; also to develop the optimal learning algorithms to estimate the network structure if it is unknown; and (iii) to design a graph shift operator or manifold kernel that can best represent the complex nonlocal hidden correlation and statistical structures of data for better data filtering, analysis and processing. We will further apply our research to applications such as multimedia signal processing, video event detection and predictions, 5G IoT networks, social networks, finance and economic big data analysis.
信号处理沿着复苏的人工智能技术已经变得无处不在,可以处理来自各种类型来源的数据。来自传感器网络和社交网络等网络源或来自图像和视频等其他源的许多数据都包含显式或隐式的结构化关系,这些关系可以通过图形来最好地表示。这些类型的网络数据对信号处理研究提出了新的挑战。近年来,针对具有图形结构的数据的信号处理和统计建模技术主要包括a)图形建模和学习理论,以及B)图形信号处理。然而,这些理论和方法还没有得到充分的研究下所提出的新兴应用,以解决问题,如定位和跟踪,源识别,网络上的最优滤波的各种约束。此外,在许多情况下,未知或隐式网络/图结构的识别或学习是一个非常具有挑战性的问题。拟议研究的总体目标是系统地开发新的信号和数据处理理论和方法,用于具有显式(如传感器网络)或隐式(如视频)的数据,底层基于非局部图的关系和/或动态信息扩散流,以及传感器/社交网络,5G物联网(IoT)无线网络,多模态多媒体内容分析,经济大数据。具体目标是:(i)在传感器网络上开发用于动态多目标定位和跟踪的通用网络统计信号处理和推理模型和方法;(ii)基于图移位算子理论,在存在噪声和干扰的情况下,识别由网络信息扩散过程产生的数据的原始信号源,并开发网络上的最佳滤波和预测方法;还开发最佳的学习算法,以估计网络结构,如果它是未知的;和(iii)设计一个图形移动操作或流形内核,可以最好地表示复杂的非局部隐藏的相关性和统计结构的数据,更好的数据过滤,分析和处理。我们将进一步将我们的研究应用于多媒体信号处理、视频事件检测和预测、5G物联网网络、社交网络、金融和经济大数据分析等应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, XiaoPing其他文献
MicroRNA 107 Partly Inhibits Endothelial Progenitor Cells Differentiation via HIF-1 beta
MicroRNA 107 通过 HIF-1 beta 部分抑制内皮祖细胞分化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3.7
- 作者:
Meng, Shu;Cao, JiaTian;Wang, LianSheng;Zhou, Qing;Li, YiGang;Shen, ChengXing;Zhang, XiaoPing;Wang, ChangQian - 通讯作者:
Wang, ChangQian
Enhanced expression of caveolin-1 possesses diagnostic and prognostic value and promotes cell migration, invasion and sunitinib resistance in the clear cell renal cell carcinoma
Caveolin-1 表达增强具有诊断和预后价值,可促进透明细胞肾细胞癌中的细胞迁移、侵袭和舒尼替尼耐药
- DOI:
10.1016/j.yexcr.2017.07.004 - 发表时间:
2017-09-15 - 期刊:
- 影响因子:3.7
- 作者:
Ruan, HaiLong;Li, Xiang;Zhang, XiaoPing - 通讯作者:
Zhang, XiaoPing
PLIN3 is up-regulated and correlates with poor prognosis in clear cell renal cell carcinoma
PLIN3 上调并与透明细胞肾细胞癌的不良预后相关
- DOI:
10.1016/j.urolonc.2018.04.006 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:2.7
- 作者:
Wang, Keshan;Ruan, HaiLong;Zhang, XiaoPing - 通讯作者:
Zhang, XiaoPing
Overexpression of PPT2 Represses the Clear Cell Renal Cell Carcinoma Progression by Reducing Epithelial-to-mesenchymal Transition
- DOI:
10.7150/jca.36477 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Yuan, ChangFei;Xiong, ZhiYong;Zhang, XiaoPing - 通讯作者:
Zhang, XiaoPing
Expression of AMPA receptor subunits in hippocampus after status convulsion
- DOI:
10.1007/s00381-012-1747-3 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:1.4
- 作者:
Hu, Yue;Jiang, Li;Zhang, XiaoPing - 通讯作者:
Zhang, XiaoPing
Zhang, XiaoPing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, XiaoPing', 18)}}的其他基金
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPIN-2020-04661 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPAS-2020-00106 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPAS-2020-00106 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Advanced Localization Technology and RF Propagation Models for Emergency Radio Communication Enhancement System (ERCES)
用于紧急无线电通信增强系统(ERCES)的先进定位技术和射频传播模型
- 批准号:
558257-2020 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
COVID-19 - AI Based Screening and Monitoring of COVID-19 Respiration Patterns using Acoustic Sensors
COVID-19 - 使用声学传感器进行基于 AI 的 COVID-19 呼吸模式筛查和监测
- 批准号:
550079-2020 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPIN-2020-04661 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPAS-2020-00106 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Advanced Localization Technology and RF Propagation Models for Emergency Radio Communication Enhancement System (ERCES)
用于紧急无线电通信增强系统(ERCES)的先进定位技术和射频传播模型
- 批准号:
558257-2020 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Signal and Data Processing Based on Statistical and Graphical Models
基于统计和图形模型的信号和数据处理
- 批准号:
RGPIN-2015-04483 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Predicting voting behaviour based on machine learning and signal processing algorithms
基于机器学习和信号处理算法预测投票行为
- 批准号:
536609-2018 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Engage Grants Program
相似国自然基金
一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
- 批准号:81601856
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPIN-2020-04661 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Applications of Stochastic Machine Learning and Statistical Signal Processing Approaches to Automatic Music Transcription and Visualisation
随机机器学习和统计信号处理方法在自动音乐转录和可视化中的应用
- 批准号:
2738835 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Studentship
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPAS-2020-00106 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPAS-2020-00106 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
CIF: Small: Statistical Signal Processing of Social Networks with Behavioral Economics Constraints
CIF:小:具有行为经济学约束的社交网络的统计信号处理
- 批准号:
2112457 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPIN-2020-04661 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPAS-2020-00106 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Signal and Data Processing Based on Statistical and Graphical Models
基于统计和图形模型的信号和数据处理
- 批准号:
RGPIN-2015-04483 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Developing clinical decision support tools to characterize neurodegenerative disorders using biomedical speech signal processing and statistical machi
使用生物医学语音信号处理和统计机器开发临床决策支持工具来表征神经退行性疾病
- 批准号:
2261211 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Studentship
Development of a decision support tool to improve the diagnosis and classification of myocardial infarction using signal processing and statistical ma
开发决策支持工具,利用信号处理和统计方法改进心肌梗死的诊断和分类
- 批准号:
2104455 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Studentship