Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
基本信息
- 批准号:RGPIN-2020-04568
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Through decades of research in neuroscience and dynamical systems theory, our understanding of the dynamics of isolated brain cells (neurons) has evolved considerably. In fact, we can now predict the dynamics of a neuron's electrical activity as well as we can predict the dynamics of a simple pendulum. This feat is performed by modelling neurons as Ordinary Differential Equations (ODE's). However, we lose this predictability when we couple these ODE's together as nodes interacting in a network. This is unfortunate because we can now record from thousands of real neurons and create elaborate, experimentally based network models. Without an understanding of how these connection weights interact with neural dynamics to create network dynamics, experimental neuroscientists are blind to the potential functions and problem-solving algorithms employed by these brain circuits. Interestingly, the same problem is faced by the machine learning community after training Artificial Neural Networks (ANNs). Without knowing how trained connection weights create network dynamics in ANN's, users of machine learning remain blind to how these black-boxes solve problems. Here, our ignorance is dangerous as ANNs can make catastrophic errors in critical applications like driverless cars, and automated financial trading algorithms, leading to loss of life or capital. Thus, to address our ignorance in how functional network dynamics emerge in both biological circuits and artificial trained networks, my research program has two long-term objectives: 1. The first long-term objective is to elucidate the relationship between network dynamics, node dynamics, and node connectivity by investigating what is commonly called the forward problem: How does an arbitrary connectivity matrix determine the large-scale behaviors of networks of model neurons (ODE's)? The solution to the forward problem takes the form of a mean-field system, a low dimensional and analytical descriptor of the network dynamics. 2. The second long-term objective of my research program is to simultaneously investigate the inverse problem: Given knowledge of the large-scale dynamics, function, or behaviour of a network of model neurons, what is the full set of connection weight matrices that yield these dynamics? The solution to the inverse problem is a set of potential connectivity profiles that yield the intended dynamics in a network. With a bi-directional approach to the forward and inverse problem, we can finally address how functional and complex network dynamics emerge in networks of interacting neurons. This bi-directional approach would revolutionize both machine learning and computational neuroscience by providing a mechanistic understanding of how artificial and biological networks solve problems. In the case of ANNs, this research program will help resolve the broader public's hesitance in trusting these algorithms in critical applications like driverless cars or robotic surgeries.
通过几十年的神经科学和动力系统理论的研究,我们对孤立脑细胞(神经元)动力学的理解已经有了很大的发展。事实上,我们现在可以预测神经元电活动的动态,就像我们可以预测单摆的动态一样。这一壮举是通过将神经元建模为常微分方程(ODE)来实现的。然而,当我们将这些ODE耦合在一起作为网络中相互作用的节点时,我们就失去了这种可预测性。这是不幸的,因为我们现在可以记录数千个真实的神经元,并创建精心设计的基于实验的网络模型,如果不了解这些连接权重如何与神经动力学相互作用以创建网络动力学,实验神经科学家就无法了解这些大脑回路所使用的潜在功能和解决问题的算法。有趣的是,机器学习社区在训练人工神经网络(ANN)后也面临着同样的问题。由于不知道经过训练的连接权重如何在ANN中创建网络动态,机器学习的用户对这些黑盒子如何解决问题仍然一无所知。在这里,我们的无知是危险的,因为人工神经网络可能在无人驾驶汽车和自动金融交易算法等关键应用中犯下灾难性错误,导致生命或资本损失。因此,为了解决我们对功能网络动态如何出现在生物电路和人工训练网络中的无知,我的研究计划有两个长期目标:1。第一个长期目标是阐明网络动力学,节点动力学和节点连接之间的关系,通过研究通常所谓的前向问题:一个任意的连接矩阵如何确定模型神经元网络(ODE)的大规模行为?前向问题的解决方案采取的平均场系统的形式,一个低维和分析描述的网络动力学。 2.我的研究计划的第二个长期目标是同时研究逆问题:给定模型神经元网络的大规模动力学,功能或行为的知识,产生这些动力学的完整连接权重矩阵是什么?逆问题的解决方案是一组潜在的连接配置文件,这些配置文件在网络中产生预期的动态。 通过正向和反向问题的双向方法,我们最终可以解决功能和复杂的网络动力学如何在相互作用的神经元网络中出现。这种双向方法将通过提供对人工和生物网络如何解决问题的机械理解来彻底改变机器学习和计算神经科学。在人工神经网络的情况下,这项研究计划将有助于解决更广泛的公众在无人驾驶汽车或机器人手术等关键应用中信任这些算法的犹豫。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola, Wilten其他文献
Network bursting using experimentally constrained single compartment CA3 hippocampal neuron models with adaptation
- DOI:
10.1007/s10827-011-0372-6 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:1.2
- 作者:
Dur-e-Ahmad, Muhammad;Nicola, Wilten;Skinner, Frances K. - 通讯作者:
Skinner, Frances K.
Bifurcations of large networks of two-dimensional integrate and fire neurons
- DOI:
10.1007/s10827-013-0442-z - 发表时间:
2013-08-01 - 期刊:
- 影响因子:1.2
- 作者:
Nicola, Wilten;Campbell, Sue Ann - 通讯作者:
Campbell, Sue Ann
Hypothalamic CRH neurons represent physiological memory of positive and negative experience.
- DOI:
10.1038/s41467-023-44163-5 - 发表时间:
2023-12-21 - 期刊:
- 影响因子:16.6
- 作者:
Fuzesi, Tamas;Rasiah, Neilen P.;Rosenegger, David G.;Rojas-Carvajal, Mijail;Chomiak, Taylor;Daviu, Nuria;Molina, Leonardo A.;Simone, Kathryn;Sterley, Toni-Lee;Nicola, Wilten;Bains, Jaideep S. - 通讯作者:
Bains, Jaideep S.
Photons guided by axons may enable backpropagation-based learning in the brain.
- DOI:
10.1038/s41598-022-24871-6 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:4.6
- 作者:
Zarkeshian, Parisa;Kergan, Taylor;Ghobadi, Roohollah;Nicola, Wilten;Simon, Christoph - 通讯作者:
Simon, Christoph
Nicola, Wilten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicola, Wilten', 18)}}的其他基金
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
- 批准号:
RGPIN-2020-04568 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
- 批准号:
RGPIN-2020-04568 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
- 批准号:
DGECR-2020-00334 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
Mean Field Analysis of Large Networks of Neurons with Synaptic Plasticity
具有突触可塑性的大型神经元网络的平均场分析
- 批准号:
487777-2016 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Postdoctoral Fellowships
Mean Field Analysis of Large Networks of Neurons with Synaptic Plasticity
具有突触可塑性的大型神经元网络的平均场分析
- 批准号:
487777-2016 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Postdoctoral Fellowships
Mean Field Analysis of Large Networks of Neurons with Synaptic Plasticity
具有突触可塑性的大型神经元网络的平均场分析
- 批准号:
487777-2016 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Postdoctoral Fellowships
Bifurcation Analysis of Large Networks of Discontinuous Pulse Coupled Oscillators Through a Mean-Field Reduction
通过平均场缩减对大型不连续脉冲耦合振荡器网络进行分岔分析
- 批准号:
442080-2013 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bifurcation Analysis of Large Networks of Discontinuous Pulse Coupled Oscillators Through a Mean-Field Reduction
通过平均场缩减对大型不连续脉冲耦合振荡器网络进行分岔分析
- 批准号:
442080-2013 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bifurcation Analysis of Large Networks of Discontinuous Pulse Coupled Oscillators Through a Mean-Field Reduction
通过平均场缩减对大型不连续脉冲耦合振荡器网络进行分岔分析
- 批准号:
442080-2013 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
- 批准号:
23K24829 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
ATD:Understanding Adversarial Examples in Neural Network: Theory and Algorithms
ATD:理解神经网络中的对抗性例子:理论和算法
- 批准号:
2318926 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
- 批准号:
2238079 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
- 批准号:
2238124 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
- 批准号:
2239780 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant