Movement intention detection for intuitive and non-intrusive prosthetic arm control

运动意图检测,实现直观、非侵入性的假肢控制

基本信息

  • 批准号:
    RGPIN-2020-05525
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Prosthetic arms have the potential to improve the lives of individuals who have lost arms. Yet their functioning is limited as they are not connected to the human neural system. My goal is to design and improve the interface between a prosthetic arm and the user by detecting human movement intention. When performing a goal-directed movement, humans employ their eyes and other sensory information for guiding arm movement. Comprehensive signals from both eyes and arm muscles would help us to detect movement intention. For example, during a reach-and-grasp movement, we firstly use our eyes to scan the environment, identifying a target, extracting its location, size, shape and texture, and then reaching and grabbing. However, most previous algorithms for motion intention detection were based on muscle activities and brain signals. To the best of our knowledge, utilizing eye-metrics for improving prosthesis control has rarely been explored. This knowledge gap needs to be filled in terms of how eye-motions correlate to movement intention and how fusion of eye-metrics and arm muscles signals can be employed to improve prosthesis control. The long-term objective of my research program is to advance assistive devices including human prosthesis through the inclusion of non-invasive and affordable technologies, and by improving the detection of movement intention of the users for better control of the artificial body part. My short-term objectives (within the next 5 years) are to 1) develop a prosthetic arm sock with sensors to collect muscle activities data, 2) examine the relationship between muscle and eye signals to movement intention, 3) improve grasp detection using multiple module inputs including eye-tracking technology, 4) accurately estimate finger movement using machine learning from multiple channels of bio-signals and by integrating eye-tracking (pupil diameter), and 5) develop a machine learning model to accurately predict a series of movement intentions during a sequential goal-directed task. Sensor fusion technologies will also be implemented throughout my research to utilize the advantages of multiple modules input. This work will generate important tools to convert eye motion and muscle activity signals into movement intention, which is an innovative approach to movement intention detection for intuitive prosthesis control. Prosthetic devices have been greatly improved in recent years whereas man-machine interfaces for prosthesis control do not fulfill the device potential. Bridging this gap would greatly advance prosthesis systems and improve quality of life among users. My research will benefit both the large number of people who have lost limbs and the prosthesis industry (increase in jobs and research funding). I expect that the knowledge generated from this work will enable us to design a smart prosthetic arm and further improve our understanding of human-machine/robot interaction, remote manipulation and assistive device control.
假肢有潜力改善失去手臂的人的生活。然而,它们的功能是有限的,因为它们与人类神经系统没有联系。我的目标是通过检测人类运动意图来设计和改进假肢与用户之间的界面。当执行目标导向的运动时,人类利用眼睛和其他感官信息来引导手臂运动。来自眼睛和手臂肌肉的综合信号将帮助我们检测运动意图。例如,在伸手抓取动作中,我们首先用眼睛扫描环境,识别目标,提取其位置、大小、形状和纹理,然后伸手抓取。然而,之前大多数运动意图检测算法都是基于肌肉活动和大脑信号。据我们所知,利用眼动测量来改善假肢控制的研究很少。需要填补这一知识空白,包括眼动如何与运动意图相关联,以及如何利用眼动测量和手臂肌肉信号的融合来改善假肢控制。我的研究计划的长期目标是通过采用非侵入性且负担得起的技术来推进包括人体假肢在内的辅助设备,并通过改进对用户运动意图的检测来更好地控制人造身体部分。我的短期目标(未来 5 年内)是 1) 开发一款带有传感器的假肢袜子,用于收集肌肉活动数据,2) 检查肌肉和眼睛信号与运动意图之间的关系,3) 使用包括眼球追踪技术在内的多个模块输入改进抓握检测,4) 使用来自多个生物信号通道的机器学习并通过集成眼球追踪(瞳孔直径)准确估计手指运动,5) 开发 机器学习模型可以在连续的目标导向任务中准确预测一系列运动意图。传感器融合技术也将在我的研究中得到应用,以利用多模块输入的优势。这项工作将产生将眼球运动和肌肉活动信号转换为运动意图的重要工具,这是一种用于直观假肢控制的运动意图检测的创新方法。近年来,假肢装置得到了很大的改进,但用于假肢控制的人机界面并没有充分发挥装置的潜力。弥合这一差距将极大地改进假肢系统并提高用户的生活质量。我的研究将使大量失去肢体的人和假肢行业受益(增加就业机会和研究经费)。我希望这项工作产生的知识将使我们能够设计智能假肢,并进一步提高我们对人机/机器人交互、远程操作和辅助设备控制的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiang, Xianta其他文献

Synchronization of Pupil Dilations Correlates With Team Performance in a Simulated Laparoscopic Team Coordination Task
Wearable step counting using a force myography-based ankle strap.
Detection of Changes in Surgical Difficulty: Evidence From Pupil Responses
  • DOI:
    10.1177/1553350615573582
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Zheng, Bin;Jiang, Xianta;Atkins, M. Stella
  • 通讯作者:
    Atkins, M. Stella
Integrating computer vision to prosthetic hand control with sEMG: Preliminary results in grasp classification.
  • DOI:
    10.3389/frobt.2022.948238
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Wang, Shuo;Zheng, Jingjing;Huang, Ziwei;Zhang, Xiaoqin;Prado da Fonseca, Vinicius;Zheng, Bin;Jiang, Xianta
  • 通讯作者:
    Jiang, Xianta
Workload assessment of surgeons: correlation between NASA TLX and blinks

Jiang, Xianta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiang, Xianta', 18)}}的其他基金

Movement intention detection for intuitive and non-intrusive prosthetic arm control
运动意图检测,实现直观、非侵入性的假肢控制
  • 批准号:
    RGPIN-2020-05525
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Equipment System for Developing Natural Control Interface of Next Generation Affordable Prosthetic Hands
用于开发下一代经济型假手自然控制界面的设备系统
  • 批准号:
    RTI-2022-00688
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Tools and Instruments
Movement intention detection for intuitive and non-intrusive prosthetic arm control
运动意图检测,实现直观、非侵入性的假肢控制
  • 批准号:
    RGPIN-2020-05525
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Movement intention detection for intuitive and non-intrusive prosthetic arm control
运动意图检测,实现直观、非侵入性的假肢控制
  • 批准号:
    DGECR-2020-00296
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

High efficiency particulate air cleaner intervention to reduce respiratory virus exposure in elementary schools
高效颗粒空气净化器干预减少小学呼吸道病毒暴露
  • 批准号:
    10722583
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
A Technology-enhanced and Multilevel Approach to Promote Cervical Cancer Prevention Among Women Living with HIV
采用技术增强的多层次方法促进艾滋病毒感染妇女的宫颈癌预防
  • 批准号:
    10740622
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Development of a rapid, scalable, and deployable point-of-care blood volume diagnostic for monitoring postpartum and trauma-related hemorrhage
开发快速、可扩展且可部署的护理点血容量诊断,用于监测产后和创伤相关出血
  • 批准号:
    10603819
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
  • 批准号:
    10662702
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
A Novel Spray-On Sensing Platform Technology that Enables Wearable Visual Monitoring of Physiological Data and Environmental Exposure
一种新型喷涂传感平台技术,可实现生理数据和环境暴露的可穿戴视觉监测
  • 批准号:
    10578579
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Biophysical detection of skin changes to cue pressure injury prevention in nursing homes
皮肤变化的生物物理检测以提示疗养院压力损伤的预防
  • 批准号:
    10706628
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
SCH: AI-DOCTOR COLLABORATIVE MEDICAL DIAGNOSIS
SCH:AI-医生协同医疗诊断
  • 批准号:
    10688087
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Biophysical detection of skin changes to cue pressure injury prevention in nursing homes
皮肤变化的生物物理检测以提示疗养院压力损伤的预防
  • 批准号:
    10501259
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
An AI-based Multimodal Approach to Predict Pain in Postnatal Care Scenarios
基于人工智能的多模式方法来预测产后护理场景中的疼痛
  • 批准号:
    10546650
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Monitoring the progression of endometriosis using PET/CT imaging
使用 PET/CT 成像监测子宫内膜异位症的进展
  • 批准号:
    10583449
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了