Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
基本信息
- 批准号:RGPIN-2020-05622
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past decades, substantial progress has been made on the development of advanced materials and manufacturing processes to increase load bearing capacity and to facilitate the maintenance of metallic components. Development of high fatigue resistant steels and electron beam welding are examples of technological breakthroughs used in the energy production and automotive industries. While these technologies are promising, their utilization to manufacture and repair fatigue critical components remains limited due to the lack of fundamental knowledge and experimental data that prevent accurate sizing and service life prediction. To unleash the full potential of innovative materials and processes, it is crucial that significant progress be made on the characterization and fundamental understanding of component's fatigue behavior, and the related damage mechanisms. The overarching and long-term goal of the proposed DGP is to develop a fundamental understanding of the transformation induced plasticity (TRIP) under cyclic loading required to the development and manufacture of novel materials with an improved resistance to crack propagation. Outcomes for these new materials are pertinent for the automotive, the aerospace and the energy production sectors. The specific objectives (SO) of the program are SO1) to understand and control the mechanical stability of austenite (TRIP kinetic) and SO2) to understand and characterize the crack growth kinetic in the TRIP-aided microstructures. The uniqueness of the DGP program will translate into major scientific contributions on advanced fatigue testing, on the development of new materials and processes and on the durability of critical component that will be of great interest to the industry. It will support the development and acceptance of innovative materials and processes stemming from Quebec industries (Sodel, Velan, Hydro-Quebec) with a strong emphasis on components durability. It will also contribute to the adoption of technologies that will have a positive impact on energy production, by improving the load bearing capacity of components, and on the environment, by reducing the probability of catastrophic failures. Prof. Brochu's multidisciplinary academic background combined with a 10-year period of industrial practice as a professional engineer have enriched her academic work and contributed to her international recognition as a leader in the field of fatigue of metallic materials. Since 2011, the nominee has contributed to the training of 59 highly qualified persons (HQP)s. Eight HQPs will be trained within the research program of this discovery grant.
在过去的几十年里,在开发先进材料和制造工艺以提高承载能力和便利金属部件维护方面取得了实质性进展。高耐疲劳钢的开发和电子束焊接是能源生产和汽车行业技术突破的例子。尽管这些技术前景看好,但它们在制造和修复疲劳关键部件方面的应用仍然有限,因为缺乏基础知识和实验数据,阻碍了准确的尺寸计算和使用寿命预测。为了充分释放创新材料和工艺的潜力,关键是在构件疲劳行为及其相关损伤机制的表征和基础理解方面取得重大进展。建议的DGP的总体和长期目标是对循环加载下的相变诱导塑性(TRIP)有一个基本的理解,这是开发和制造具有更好的抗裂纹扩展能力的新材料所必需的。这些新材料的成果与汽车、航空航天和能源生产部门相关。该计划的具体目标(SO1)是了解和控制奥氏体力学稳定性(TRIP动力学)和SO2)以了解和表征TRIP辅助组织中的裂纹扩展动力学。DGP计划的独特性将转化为在先进疲劳试验、新材料和新工艺的开发以及关键部件耐久性方面的重大科学贡献,这将引起业界的极大兴趣。它将支持魁北克工业(Sodel、Velan、Hydro-Quebec)创新材料和工艺的开发和验收,并高度重视部件的耐用性。它还将有助于采用将对能源生产产生积极影响的技术,通过提高部件的承载能力,并通过降低灾难性故障的可能性对环境产生积极影响。Brochu教授具有多学科的学术背景,并作为一名专业工程师进行了10年的工业实践,丰富了她的学术工作,为她在金属材料疲劳领域的国际公认做出了贡献。自2011年以来,被提名者已经为59名高素质人才(HQP)S的培训做出了贡献。8名HQP将在这项发现基金的研究计划中接受培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brochu, Myriam其他文献
Effect of shot peening on short crack propagation in 300M steel
- DOI:
10.1016/j.ijfatigue.2019.105346 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:6
- 作者:
Bag, Amrita;Levesque, Martin;Brochu, Myriam - 通讯作者:
Brochu, Myriam
Propagation of short fatigue cracks in permanent and semi-solid mold 357 aluminum alloy
- DOI:
10.1016/j.ijfatigue.2011.08.009 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:6
- 作者:
Brochu, Myriam;Verreman, Yves;Bouchard, Dominique - 通讯作者:
Bouchard, Dominique
Characterization of bending vibration fatigue of SLM fabricated Ti-6A1-4V
- DOI:
10.1016/j.ijfatigue.2017.02.005 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:6
- 作者:
Ellyson, Benjamin;Brochu, Mathieu;Brochu, Myriam - 通讯作者:
Brochu, Myriam
Effect of different shot peening conditions on the fatigue life of 300 M steel submitted to high stress amplitudes
- DOI:
10.1016/j.ijfatigue.2019.105274 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:6
- 作者:
Bag, Amrita;Delbergue, Dorian;Brochu, Myriam - 通讯作者:
Brochu, Myriam
A novel approach for quantifying hydrogen embrittlement using side-grooved CT samples
- DOI:
10.1016/j.engfracmech.2022.108324 - 发表时间:
2022-03-21 - 期刊:
- 影响因子:5.4
- 作者:
Laliberte-Riverin, Simon;Brochu, Myriam - 通讯作者:
Brochu, Myriam
Brochu, Myriam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brochu, Myriam', 18)}}的其他基金
Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
- 批准号:
CRC-2019-00302 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Canada Research Chairs
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Fatigue Damage Of Advanced Metallic Materials
先进金属材料的疲劳损伤
- 批准号:
CRC-2019-00302 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
- 批准号:
530064-2018 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
- 批准号:
CRC-2019-00302 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
- 批准号:
530064-2018 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Prévoir le comportement mécanique des matériaux par la caractérisation de la topographie et de la microstructure
初步了解地形和微观结构的材料机械性能
- 批准号:
RTI-2020-00626 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Research Tools and Instruments
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
- 批准号:
530064-2018 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Optimization of phase transformation for the development of fatigue resistant materials
优化相变以开发抗疲劳材料
- 批准号:
RGPIN-2014-05127 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
- 批准号:
24K15741 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
In-situ S/TEM investigation on nature and consequence of mechanically induced martensite in metallic materials
金属材料中机械诱导马氏体的性质和后果的原位 S/TEM 研究
- 批准号:
23K13222 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tissue-level Determinants of Mechanically-induced Arrythmias
机械诱发心律失常的组织水平决定因素
- 批准号:
495557 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Miscellaneous Programs
CAREER: Manufacturing Soft Functional Composites through Mechanically Induced Assembly of Liquid Microstructures in Elastic Films
职业:通过弹性薄膜中液体微结构的机械诱导组装制造软功能复合材料
- 批准号:
2238754 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Identifying the Structural Adaptations that Drive the Mechanically Induced Growth of Skeletal Muscle
确定驱动骨骼肌机械诱导生长的结构适应
- 批准号:
10711412 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Effects of Mechanically-Induced Stress on the Proteome and Development
机械应力对蛋白质组和发育的影响
- 批准号:
1946456 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Investigation of NOX4-mediated mechanotransduction in mechanically-induced cardiac failure
NOX4介导的机械性心力衰竭中机械转导的研究
- 批准号:
20K12598 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanisms of mechanically-induced acute pancreatitis
机械性急性胰腺炎的机制
- 批准号:
10538561 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别: