New Chemistries for Metal Matrix Composites
金属基复合材料的新化学物质
基本信息
- 批准号:RGPIN-2021-02386
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research program new synthesis methods will be used to enable new bulk and surface chemistries of alloys and metal matrix composites (MMCs) made by laser powder bed fusion (LPBF). In the LPBF method, metal parts are essentially 3D printed with a laser from metal powders, allowing the creation of metal parts with complex shapes and with properties not otherwise attainable. However, the composition of LPBF parts is limited by the spray atomization method used to make metal powders. In addition, although highly desirable, the surface chemistry of Al makes Al-based alloys amongst the most difficult to process by LPBF. New chemistries are required to solve these issues. It would also be highly desirable to make LPBF parts from metal matrix composites (MMCs), in which reinforcing ceramic particles are incorporated in the alloy. MMCs are highly useful for lightweight structural components to increase fuel economy in aircraft and automobiles. However, MMCs are generally incompatible with LPBF methods. In this research program new synthesis methods will be used to significantly increase the chemical compositions of alloys obtainable by the LPBF method. This research is enabled by dry particle microgranulation, recently developed in the Obrovac lab, which can convert ball milled powders into smooth, spherical powders with morphologies that are compatible with LPBF. In addition, surface coatings, internal composition gradients and even ceramic reinforcing particles may be introduced into the particles. This enables a wide variety of alloy matrix chemistries, surface chemistries and reinforcing chemistries to be used in LPBF, further enabling new MMCs to be made by this process. The precise control of particle morphology, independent of particle composition, also allows fundamental studies of the chemistry of the LPBF process. These new methods have never been applied to the synthesis of alloys. This research program will combine bulk alloy chemistry, surface chemistry, alloy synthesis, and nano-scale particle design, giving students a rich and valuable training experience. Outcomes of this research program are the production of new alloy parts using compositions and microstructures that have been otherwise hindered because of cost, poor particle flow characteristics or safety issues. This could greatly benefit the environment and Canadian automotive and aerospace industries by providing inexpensive and lightweight high strength parts; thereby reducing cost, improving fuel economy and improving the range of EVs.
在该研究计划中,新的合成方法将用于通过激光粉末床熔融(LPBF)制造合金和金属基复合材料(MMC)的新本体和表面化学。在 LPBF 方法中,金属部件本质上是使用金属粉末激光 3D 打印出来的,从而可以创建具有复杂形状和其他方式无法实现的性能的金属部件。然而,LPBF 零件的成分受到用于制造金属粉末的喷雾雾化方法的限制。此外,虽然非常理想,但铝的表面化学性质使得铝基合金成为最难用 LPBF 加工的合金之一。需要新的化学物质来解决这些问题。人们还非常希望用金属基复合材料(MMC)制造 LPBF 部件,其中合金中加入了增强陶瓷颗粒。 MMC 对于轻质结构部件非常有用,可提高飞机和汽车的燃油经济性。然而,MMC 通常与 LPBF 方法不兼容。在该研究计划中,将使用新的合成方法来显着增加通过 LPBF 方法获得的合金的化学成分。这项研究是通过 Obrovac 实验室最近开发的干颗粒微颗粒化技术实现的,它可以将球磨粉末转化为光滑的球形粉末,其形态与 LPBF 兼容。此外,表面涂层、内部成分梯度甚至陶瓷增强颗粒可以被引入到颗粒中。这使得多种合金基体化学物质、表面化学物质和增强化学物质能够用于 LPBF,进一步使得通过该工艺制造新的 MMC 成为可能。颗粒形态的精确控制(与颗粒成分无关)还可以对 LPBF 过程的化学进行基础研究。这些新方法从未应用于合金的合成。该研究项目将结合块体合金化学、表面化学、合金合成和纳米级颗粒设计,为学生提供丰富而宝贵的培训经验。该研究计划的成果是使用成分和微观结构生产新的合金零件,而这些成分和微观结构由于成本、颗粒流动特性差或安全问题而受到阻碍。通过提供廉价且轻质的高强度零件,这可以极大地造福于环境以及加拿大汽车和航空航天工业;从而降低成本、提高燃油经济性并提高电动汽车的续航里程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Obrovac, Mark其他文献
Obrovac, Mark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Obrovac, Mark', 18)}}的其他基金
New Chemistries for Metal Matrix Composites
金属基复合材料的新化学物质
- 批准号:
RGPIN-2021-02386 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Advanced Battery Materials and Synthesis Methods
先进电池材料及合成方法
- 批准号:
558364-2020 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Advanced Battery Materials and Synthesis Methods
先进电池材料及合成方法
- 批准号:
558364-2020 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Metal-Ion Rechargeable Batteries
金属离子充电电池
- 批准号:
RGPIN-2015-05505 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
NSERC/Novonix/Dalhousie University Industrial Research Chair in metal ion batteries
NSERC/Novonix/达尔豪斯大学金属离子电池工业研究主席
- 批准号:
407487-2015 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Industrial Research Chairs
NSERC/Novonix/Dalhousie University Industrial Research Chair in metal ion batteries
NSERC/Novonix/达尔豪斯大学金属离子电池工业研究主席
- 批准号:
407487-2015 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Industrial Research Chairs
Metal-Ion Rechargeable Batteries
金属离子充电电池
- 批准号:
RGPIN-2015-05505 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
NSERC/3M Canada/Dalhousie University Industrial Research Chair in metal ion batteries
NSERC/3M 加拿大/达尔豪斯大学金属离子电池工业研究主席
- 批准号:
407487-2015 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Industrial Research Chairs
Metal-Ion Rechargeable Batteries
金属离子充电电池
- 批准号:
RGPIN-2015-05505 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Metal-Ion Rechargeable Batteries
金属离子充电电池
- 批准号:
RGPIN-2015-05505 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
- 批准号:
2340993 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Unlocking New Chemistries in Extant Enzymes for Synthesizing Bioactive Molecules
解锁现有酶中用于合成生物活性分子的新化学成分
- 批准号:
10784165 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Stimuli-responsive porous soft materials by orthogonal linkage chemistries
正交连接化学刺激响应多孔软材料
- 批准号:
22KF0207 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for JSPS Fellows
LEAPS-MPS: CAS: What Makes Flow Batteries Fail? Establishing 'Stress Test' Protocols for Accelerated Characterization of New Chemistries
LEAPS-MPS:CAS:是什么导致液流电池失效?
- 批准号:
2316559 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Understanding of the diversity of prebiotic chemistries and emergence of molecular systems in various planetary environments in the Solar System
了解生命起源前化学的多样性以及太阳系各种行星环境中分子系统的出现
- 批准号:
22K21344 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Fund for the Promotion of Joint International Research (International Leading Research )
Mechanisms of novel biological nitrogen chemistries
新型生物氮化学机制
- 批准号:
10668474 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Measuring the complex air-plasma chemistries of ModuNOxD; an antiviral Ozone/NOx treatment for public transport and infrastructure.
测量 ModuNOxD 复杂的空气-等离子体化学成分;
- 批准号:
10022686 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative R&D
Dynamic and degradable covalent chemistries to develop advanced polymeric materials
用于开发先进聚合物材料的动态和可降解共价化学
- 批准号:
RGPIN-2021-03473 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




