Flexible and robust deep learning models for integrative analysis of single-cell RNA sequencing data
灵活而强大的深度学习模型,用于单细胞 RNA 测序数据的综合分析
基本信息
- 批准号:RGPIN-2021-04072
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Single cell RNA sequencing (scRNA--Seq) allows for cells to be measured individually, which permits us to investigate cell- to -cell heterogeneity, discover novel cell populations and understand their relationships. ScRNA--Seq is rapidly improving our understanding of functional diversity among biological cells. Recent studies reported large-scale scRNA--Seq data sets. Hence, to comprehensively analyze complex biological processes, different types of single -cell RNA data from multiple experiments need to be integrated, which require flexible but rigorous computational frameworks. In this research program, my team and I will work toward development of flexible and robust deep learning models to integrate scRNA--Seq data from different species and experiments to explore cellular heterogeneity. This includes three research themes: Deep tensor factorization approaches for integration of scRNA--Seq data from human and mouse to stratify cell types. Many sequencing experiments have generated large number of labeled and unlabeled datasets of single cells from human and mouse. We will develop deep tensor factorization-based approaches, which integrate tensor factorization with self-supervised deep learning methods, to leverage these diverse datasets for investigating cell type heterogeneity. We will study unique cellular relationships between the datasets. Transfer learning approaches for bulk tissue cell type deconvolution with multi-subject single--cell expression. Understanding of cell type composition in relevant tissues is an important step toward a digital approach to tissue characterization. We will develop semi--supervised transfer learning methods to utilize cell type-specific gene expression from scRNA--Seq data to characterize cell type compositions from bulk RNA--Seq data in complex tissues. This can enable the transfer of cell type specific gene expression information from one dataset to another and the characterization of cellular heterogeneity of complex tissues. Biologically interpretable deep learning models for characterizing cell type-specific regulatory networks. We aim to develop an attention--based graph convolutional network (GCN) for modeling cell type-specific regulatory networks using large single -cell transcriptomics datasets. Through the model we can connect gene expression to cellular phenotypes through large regulatory networks. We will validate the model's interpretability on simulated data and biological systems with known ground truth, and reveal regulatory proteins in underexplored systems. Through this research program, we will deliver our flexible and robust deep learning models through open-source software tools. By addressing several major challenges in single cell transcriptome, our new models and tools will help unleash the full potential of scRNA--Seq technologies for studying cellular heterogeneity, which will also bring significant benefits to large animal science, agriculture and plant science in Canada.
单细胞RNA测序(scRNA-Seq)允许单独测量细胞,这使我们能够研究细胞与细胞的异质性,发现新的细胞群并了解它们的关系。ScRNA-Seq正在迅速提高我们对生物细胞功能多样性的理解。最近的研究报道了大规模scRNA-Seq数据集。因此,为了全面分析复杂的生物过程,需要整合来自多个实验的不同类型的单细胞RNA数据,这需要灵活但严格的计算框架。在这个研究项目中,我和我的团队将致力于开发灵活而强大的深度学习模型,以整合来自不同物种和实验的scRNA-Seq数据,探索细胞异质性。这包括三个研究主题:用于整合scRNA的深度张量因子分解方法-来自人类和小鼠的Seq数据以分层细胞类型。许多测序实验已经产生了大量来自人和小鼠的单细胞的标记和未标记数据集。我们将开发基于深度张量因子分解的方法,将张量因子分解与自我监督深度学习方法相结合,以利用这些不同的数据集来研究细胞类型异质性。我们将研究数据集之间独特的细胞关系。具有多主题单细胞表达的大块组织细胞类型去卷积的迁移学习方法。了解相关组织中的细胞类型组成是迈向组织表征数字化方法的重要一步。我们将开发半监督迁移学习方法,利用scRNA-Seq数据中的细胞类型特异性基因表达来表征复杂组织中大量RNA-Seq数据中的细胞类型组成。这可以使细胞类型特异性基因表达信息从一个数据集转移到另一个数据集,并表征复杂组织的细胞异质性。生物学上可解释的深度学习模型,用于表征细胞类型特异性调控网络。我们的目标是开发一个基于注意力的图卷积网络(GCN),用于使用大型单细胞转录组学数据集对细胞类型特异性调控网络进行建模。通过该模型,我们可以通过大型调控网络将基因表达与细胞表型联系起来。我们将验证模型的可解释性模拟数据和生物系统与已知的地面真相,并揭示调控蛋白在探索系统。通过这项研究计划,我们将通过开源软件工具提供灵活而强大的深度学习模型。通过解决单细胞转录组中的几个主要挑战,我们的新模型和工具将有助于释放scRNA-Seq技术在研究细胞异质性方面的全部潜力,这也将为加拿大的大型动物科学,农业和植物科学带来重大利益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hu, Pingzhao其他文献
Data integration in genetics and genomics: methods and challenges.
- DOI:
10.4061/2009/869093 - 发表时间:
2009-01-12 - 期刊:
- 影响因子:0
- 作者:
Hamid, Jemila S;Hu, Pingzhao;Beyene, Joseph - 通讯作者:
Beyene, Joseph
YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms
- DOI:
10.1016/j.cmpb.2022.106903 - 发表时间:
2022-05-26 - 期刊:
- 影响因子:6.1
- 作者:
Su, Yongye;Liu, Qian;Hu, Pingzhao - 通讯作者:
Hu, Pingzhao
Bioinformatics driven discovery of small molecule compounds that modulate the FOXM1 and PPARA pathway activities in breast cancer.
- DOI:
10.1038/s41397-022-00297-1 - 发表时间:
2023-07 - 期刊:
- 影响因子:2.8
- 作者:
Huang, Shujun;Hu, Pingzhao;Lakowski, Ted M. - 通讯作者:
Lakowski, Ted M.
DTF: Deep Tensor Factorization for predicting anticancer drug synergy
- DOI:
10.1093/bioinformatics/btaa287 - 发表时间:
2020-08-15 - 期刊:
- 影响因子:5.8
- 作者:
Sun, Zexuan;Huang, Shujun;Hu, Pingzhao - 通讯作者:
Hu, Pingzhao
Automated Counting of Cancer Cells by Ensembling Deep Features
- DOI:
10.3390/cells8091019 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:6
- 作者:
Liu, Qian;Junker, Anna;Hu, Pingzhao - 通讯作者:
Hu, Pingzhao
Hu, Pingzhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hu, Pingzhao', 18)}}的其他基金
Flexible and robust deep learning models for integrative analysis of single-cell RNA sequencing data
灵活而强大的深度学习模型,用于单细胞 RNA 测序数据的综合分析
- 批准号:
RGPIN-2021-04072 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Deep learning for prioritizing small molecules candidates for drug repositioning
深度学习优先考虑小分子候选药物的重新定位
- 批准号:
543968-2019 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Engage Grants Program
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Research Grant
A Study of Deep Learning Approach for Hypercomplex Robust PCA
超复杂鲁棒主成分分析的深度学习方法研究
- 批准号:
22KJ1282 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SHF: Small: Software and Hardware Support for Robust Deep Learning
SHF:小型:强大深度学习的软件和硬件支持
- 批准号:
2301334 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Robust aesthetic design using deep learning with consideration of variations in customer Kansei evaluation and inter-customer Kansei variation
使用深度学习进行稳健的美学设计,考虑客户感性评估的变化和客户间感性变化
- 批准号:
23K11749 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neural and computational mechanisms underlying robust object recognition
鲁棒物体识别背后的神经和计算机制
- 批准号:
10682285 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Provable, Explainable, Efficient, Robust Deep Neural Network for Large-scale Multimedia Retrieval
用于大规模多媒体检索的可证明、可解释、高效、鲁棒的深度神经网络
- 批准号:
22KF0369 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2342726 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10831643 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:














{{item.name}}会员




