Infrared Spectroscopy in the Ultra-High Vacuum
超高真空红外光谱
基本信息
- 批准号:RTI-2022-00520
- 负责人:
- 金额:$ 10.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Research Tools and Instruments
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Organic semiconductors, that is, conjugated molecules and polymers promise cost-effective large area processability into flexible structures for novel display technology, solid-state lightning, photovoltaics, intelligent textiles or printed electronics. In contrast to inorganic semiconductors such as silicon, however, our ability to precisely control the distribution of charge in complex structures by impurity doping is still limited. While essentially all successful applications in the field such as organic light emitting diode (OLED) based display technology employ doped materials, the doping efficiency of today's dopants is low and the underlying processes at work are not yet fully understood. This is mainly because dopants used for organic semiconductors are organic molecules themselves, where we have identified chemical interaction to significantly lower the degree of charge transfer and, therefore, the doping efficiency. From our previous work emerge design strategies for more efficient molecular hole dopants, which require to be bulky molecules of high electron affinity to reduce interaction through steric hindrance while promoting efficient charge transfer. We are currently synthesizing a library of novel doping agents based on this rationale, which are, however, highly sensitive to oxygen/water. While this is no issue for their practical application due to efficient encapsulation strategies in industry, their analysis via Fourier-transform infrared spectroscopy (FTIR) to assess chemical integrity and to quantify their efficiency requires to be done in-situ. In the same vein, we are exploring the mechanisms underlying the doping of organic semiconductors using Lewis acids as alternative dopants, where a water-assisted process inducing semiconductor protonation has recently been suggested as fundamental process. This is, however, at odds with recent data suggesting this process to be energetically unfavorable. Elucidating the process of Lewis acid doping therefore requires working in an entirely water-free environment which is only enabled by ultrahigh vacuum (UHV). Therefore, we request an FTIR spectrometer to be combined with our available interconnected UHV/glovebox system. This instrument enables in-situ characterization of organic semiconductor thin films doped with our novel hole dopants and Lewis acids without exposure to oxygen/water. Thin film samples are established via spin coating in the glovebox, transferred to the UHV system for doping via vacuum sublimation of the dopants, and analysed by FTIR in-situ without breaking the vacuum. The spectrometer's capabilities for grazing incidence reflectance allow to investigate ultrathin films down to the monolayer region to equally investigate bulk doping and interface effects. This enables pushing the limits of organic semiconductor doping and foster the understanding of its basic processes, which is key for the knowledge-based development of future doping strategies.
有机半导体,即共轭分子和聚合物,承诺具有成本效益的大面积加工成柔性结构,用于新型显示技术、固态照明、光电子、智能纺织品或印刷电子。然而,与硅等无机半导体相比,我们通过杂质掺杂精确控制复杂结构中电荷分布的能力仍然有限。虽然基本上该领域中的所有成功应用(例如基于有机发光二极管(OLED)的显示技术)都采用掺杂材料,但当今掺杂剂的掺杂效率低,并且工作中的基础工艺尚未完全理解。这主要是因为用于有机半导体的掺杂剂本身就是有机分子,我们已经确定化学相互作用会显著降低电荷转移程度,从而降低掺杂效率。 从我们以前的工作中出现了更有效的分子空穴掺杂剂的设计策略,这需要是高电子亲和力的大分子,以减少通过空间位阻的相互作用,同时促进有效的电荷转移。我们目前正在合成一个基于这一原理的新型掺杂剂库,然而,它们对氧/水高度敏感。虽然由于工业中的有效封装策略,这对于它们的实际应用来说没有问题,但是通过傅里叶变换红外光谱(FTIR)对其进行分析以评估化学完整性并量化其效率需要在原位进行。同样,我们正在探索使用刘易斯酸作为替代掺杂剂掺杂有机半导体的潜在机制,其中最近提出的水辅助过程诱导半导体质子化是基本过程。然而,这与最近的数据不一致,这些数据表明这一过程在能量上是不利的。因此,阐明刘易斯酸掺杂的过程需要在完全无水的环境中工作,该环境仅由超高真空(UHV)实现。 因此,我们要求FTIR光谱仪与我们现有的互连UHV/手套箱系统相结合。该仪器能够在不暴露于氧气/水的情况下原位表征掺杂有我们的新型空穴掺杂剂和刘易斯酸的有机半导体薄膜。薄膜样品通过旋涂在手套箱中建立,转移到UHV系统中,通过掺杂剂的真空升华进行掺杂,并在不破坏真空的情况下通过FTIR原位分析。该光谱仪的掠入射反射的能力,允许调查dielectric薄膜下降到单层区域,同样调查散装掺杂和界面效应。这使得能够推动有机半导体掺杂的极限,并促进对其基本过程的理解,这是未来掺杂策略基于知识的发展的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salzmann, Ingo其他文献
Unraveling the Microstructure of Molecularly Doped Poly(3-hexylthiophene) by Thermally Induced Dedoping
- DOI:
10.1021/acs.jpcc.8b08591 - 发表时间:
2018-11-15 - 期刊:
- 影响因子:3.7
- 作者:
Hase, Hannes;O'Neill, Katie;Salzmann, Ingo - 通讯作者:
Salzmann, Ingo
From Stage to Classroom – the Transfer of Knowledge through the Festival “Science on Stage”
从舞台到课堂 — 通过节日传递知识 — 舞台上的科学 —
- DOI:
10.1557/adv.2017.95 - 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
Tajmel, Tanja;Salzmann, Ingo - 通讯作者:
Salzmann, Ingo
Intrinsic Surface Dipoles Control the Energy Levels of Conjugated Polymers
- DOI:
10.1002/adfm.200901025 - 发表时间:
2009-12-23 - 期刊:
- 影响因子:19
- 作者:
Heimel, Georg;Salzmann, Ingo;Koch, Norbert - 通讯作者:
Koch, Norbert
Intermolecular Hybridization Governs Molecular Electrical Doping
- DOI:
10.1103/physrevlett.108.035502 - 发表时间:
2012-01-18 - 期刊:
- 影响因子:8.6
- 作者:
Salzmann, Ingo;Heimel, Georg;Koch, Norbert - 通讯作者:
Koch, Norbert
Structural and electronic properties of pentacene-fullerene heterojunctions
- DOI:
10.1063/1.3040003 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:3.2
- 作者:
Salzmann, Ingo;Duhm, Steffen;Koch, Norbert - 通讯作者:
Koch, Norbert
Salzmann, Ingo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salzmann, Ingo', 18)}}的其他基金
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Physicochemical properties of graphene nanocomposites for solar cell applications
用于太阳能电池应用的石墨烯纳米复合材料的物理化学性质
- 批准号:
560736-2020 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Alliance Grants
Polypropylene (PP)/Thermoplastic elastomer (TPE) compounding to optimize physical properties
聚丙烯 (PP)/热塑性弹性体 (TPE) 混炼以优化物理性能
- 批准号:
543785-2019 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Engage Grants Program
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
DGECR-2018-00230 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Decay spectroscopy of nuclei close to the r-process path by using a ultra-low background beta-ray detector
使用超低背景 β 射线探测器对靠近 r 过程路径的原子核进行衰变光谱分析
- 批准号:
23K13134 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MRI: Development of Ultra-Broadband High-Power Frequency Comb Light Source for Advanced Spectroscopy and Imaging
MRI:开发用于先进光谱和成像的超宽带高功率频率梳光源
- 批准号:
2216021 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Standard Grant
ultra-high resolution scanning electron microscope (inc. energy-dispersive X-ray spectroscopy)
超高分辨率扫描电子显微镜(包括能量色散X射线光谱仪)
- 批准号:
450829266 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Major Research Instrumentation
Strong-field ultra-high resolution Fourier transform spectroscopy of molecules and molecular complexes
分子和分子复合物的强场超高分辨率傅里叶变换光谱
- 批准号:
20H00371 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Ultra-high-resolution emission and absorption spectroscopy of non-equilibrium and highly-reactive plasmas applied to complex materials processing
非平衡和高反应等离子体的超高分辨率发射和吸收光谱应用于复杂材料加工
- 批准号:
RTI-2021-00559 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Research Tools and Instruments
Development of alpha-particle discrimination technique by the use of ultra-thin plastic scintillation sheet and its application to alpha-gamma coincidence/anti-coincidence spectroscopy
超薄塑料闪烁片α粒子辨别技术的发展及其在α-γ符合/反符合光谱中的应用
- 批准号:
19H02651 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Band gap and electronic structure of 2D-systems, spinelectronics and ultra-hard materials studied with synchrotron-based soft X-ray Spectroscopy and Density Functional Theory
使用基于同步加速器的软 X 射线光谱和密度泛函理论研究二维系统、自旋电子学和超硬材料的带隙和电子结构
- 批准号:
RGPIN-2015-05498 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Stand-off, SPAD-enhanced Ultra-Violet Raman Spectroscopy
隔离 SPAD 增强型紫外拉曼光谱
- 批准号:
2262817 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Studentship
Formation of "nano-ice", ultra-small ice crystallite in liquid water, elucidated by Raman spectroscopy
拉曼光谱阐明了液态水中超小冰晶“纳米冰”的形成
- 批准号:
19H02679 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of the mechanism of brain temperature in human with chronic misery perfusion using ultra-high resolution proton MR spectroscopy and PET
使用超高分辨率质子 MR 波谱和 PET 阐明患有慢性痛苦灌注的人的脑温度机制
- 批准号:
18K16568 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists