Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
基本信息
- 批准号:RGPIN-2018-05092
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Doping inorganic semiconductors such as crystalline silicon by introducing impurities is the basis of all transistor technology, which enables the functionality of today's electronic devices. In the past decades, organic semiconductors emerged as fascinating alternative to inorganics promising large-area processability on flexible-substrates and enormous versatility, as their opto-electronic properties, their bandgap in particular, can be tuned by their chemical structure. The concept of doping has only recently been adapted for organics by employing molecular dopants, where all novel display technology based on organic light emitting diodes (OLEDs) today uses doped conjugated materials. Despite enormous success in applications, however, the fundamental processes of doping are still poorly understood for organic semiconductors and material design remains largely empirical. In previous work, we identified the chemical interaction between semiconductor and dopant as key factor for their low doping efficiency, as, rather than ion pairs, charge transfer complexes tend to form and take over the role of the dopants, however, of significantly reduced strength.In the present multidisciplinary research program, we aim to, first, exploit this novel understanding for regaining dopant strength by modifying the mechanism of intermolecular coupling. We will employ semiconductors capable of interacting with more than one dopant, which will make effective acceptor levels energetically more accessible. Alternatively, as charge-transfer complex formation is due to the coupling, we will inhibit the coupling by employing species of sterically shielded functional cores. Second, as we found that complex formation only occurs for molecular semiconductors, while conjugated polymers indeed form ion pairs upon doping, we aim to derive a unifying picture valid for both, from which their different doping behavior emerges naturally. To this end, we will increase the number of repeat units from the oligo- to the polymer limit, thereby assess the role of interaction locality, and observe the transition between the seemingly incongruous doping phenomenologies. Third, we aim to augment molecular doping by chemical selectivity through using Lewis acids as p-dopants, where charge transfer is restricted to species capable of acting as Lewis base. Finally, we will go beyond traditional doping to gain spatial control over the charge density in buried layers. Instead of dopant admixture, tailored energy-level alignment will render layers p-/n-doped via energy level pinning with the substrate. Overall, the proposed program will establish a complete picture of doping in organic semiconductors. It will enable knowledge-based chemical design for controlling charge density just as precisely as we customarily do today with inorganic semiconductors, for ultimately approaching similar functionality.
通过引入杂质来掺杂无机半导体(如晶体硅)是所有晶体管技术的基础,这使得当今的电子器件具有功能性。在过去的几十年里,有机半导体成为无机物的迷人替代品,有望在柔性衬底上实现大面积加工和巨大的多功能性,因为它们的光电特性,特别是它们的带隙,可以通过它们的化学结构来调节。掺杂的概念直到最近才通过采用分子掺杂剂而适用于有机物,其中今天基于有机发光二极管(OLED)的所有新型显示技术都使用掺杂的共轭材料。然而,尽管在应用方面取得了巨大的成功,但对有机半导体掺杂的基本过程仍然知之甚少,材料设计在很大程度上仍然是经验性的。在以前的工作中,我们确定了半导体和掺杂剂之间的化学相互作用是其低掺杂效率的关键因素,因为,而不是离子对,电荷转移复合物倾向于形成并接管掺杂剂的作用,然而,强度显着降低。利用这种新的理解,通过修改分子间耦合的机制来恢复掺杂剂强度。我们将采用能够与一种以上的掺杂剂相互作用的半导体,这将使有效的受体能级在能量上更容易接近。或者,由于电荷转移复合物的形成是由于耦合,我们将通过采用空间屏蔽功能核的种类来抑制耦合。其次,由于我们发现复合物的形成只发生在分子半导体中,而共轭聚合物在掺杂时确实会形成离子对,因此我们的目标是推导出一个对两者都有效的统一图像,从中自然出现它们不同的掺杂行为。为此,我们将增加从寡聚体到聚合物极限的重复单元的数量,从而评估相互作用局部性的作用,并观察看似不协调的掺杂现象之间的过渡。第三,我们的目标是通过使用刘易斯酸作为p型掺杂剂,通过化学选择性来增加分子掺杂,其中电荷转移被限制为能够充当刘易斯碱的物质。最后,我们将超越传统的掺杂,以获得空间控制的电荷密度在埋层。代替掺杂剂混合物,定制的能级对准将通过与衬底的能级钉扎而使层p-/n-掺杂。总的来说,拟议的计划将建立一个完整的图片掺杂在有机半导体。它将使基于知识的化学设计能够控制电荷密度,就像我们今天通常对无机半导体所做的那样,最终达到类似的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salzmann, Ingo其他文献
Unraveling the Microstructure of Molecularly Doped Poly(3-hexylthiophene) by Thermally Induced Dedoping
- DOI:
10.1021/acs.jpcc.8b08591 - 发表时间:
2018-11-15 - 期刊:
- 影响因子:3.7
- 作者:
Hase, Hannes;O'Neill, Katie;Salzmann, Ingo - 通讯作者:
Salzmann, Ingo
From Stage to Classroom – the Transfer of Knowledge through the Festival “Science on Stage”
从舞台到课堂 — 通过节日传递知识 — 舞台上的科学 —
- DOI:
10.1557/adv.2017.95 - 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
Tajmel, Tanja;Salzmann, Ingo - 通讯作者:
Salzmann, Ingo
Intrinsic Surface Dipoles Control the Energy Levels of Conjugated Polymers
- DOI:
10.1002/adfm.200901025 - 发表时间:
2009-12-23 - 期刊:
- 影响因子:19
- 作者:
Heimel, Georg;Salzmann, Ingo;Koch, Norbert - 通讯作者:
Koch, Norbert
Intermolecular Hybridization Governs Molecular Electrical Doping
- DOI:
10.1103/physrevlett.108.035502 - 发表时间:
2012-01-18 - 期刊:
- 影响因子:8.6
- 作者:
Salzmann, Ingo;Heimel, Georg;Koch, Norbert - 通讯作者:
Koch, Norbert
Structural and electronic properties of pentacene-fullerene heterojunctions
- DOI:
10.1063/1.3040003 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:3.2
- 作者:
Salzmann, Ingo;Duhm, Steffen;Koch, Norbert - 通讯作者:
Koch, Norbert
Salzmann, Ingo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salzmann, Ingo', 18)}}的其他基金
Infrared Spectroscopy in the Ultra-High Vacuum
超高真空红外光谱
- 批准号:
RTI-2022-00520 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Research Tools and Instruments
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Physicochemical properties of graphene nanocomposites for solar cell applications
用于太阳能电池应用的石墨烯纳米复合材料的物理化学性质
- 批准号:
560736-2020 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Alliance Grants
Polypropylene (PP)/Thermoplastic elastomer (TPE) compounding to optimize physical properties
聚丙烯 (PP)/热塑性弹性体 (TPE) 混炼以优化物理性能
- 批准号:
543785-2019 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
DGECR-2018-00230 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
等离子体浸没离子注入制备P型ZnO薄膜材料的研究
- 批准号:10975037
- 批准年份:2009
- 资助金额:42.0 万元
- 项目类别:面上项目
相似海外基金
Understanding Molecular And Photo-Assisted Doping of Organic Electronic Materials
了解有机电子材料的分子和光辅助掺杂
- 批准号:
2330929 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
N-Doping of Organic Semiconductor Materials
有机半导体材料的N掺杂
- 批准号:
2223922 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Doping Induced Strongly COrrelated Metal Organic Frameworks
掺杂诱导的强相关金属有机框架
- 批准号:
EP/X042782/1 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Research Grant
Development of a novel organic photocatalyst that combines in-plane heterojunction and doping method
结合面内异质结和掺杂方法的新型有机光催化剂的开发
- 批准号:
22K14714 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of high-sensitivity and durable terahertz sensor with fine PN doping and organic protective layer
开发具有精细PN掺杂和有机保护层的高灵敏度耐用太赫兹传感器
- 批准号:
21K14501 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Defects and Doping in Metal-Organic Frameworks
金属有机框架中的缺陷和掺杂
- 批准号:
1956403 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
単一分子で発電する新原理有機太陽電池の実現
实现单分子发电新原理有机太阳能电池
- 批准号:
20J15419 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual