Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
基本信息
- 批准号:RGPIN-2018-05092
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Doping inorganic semiconductors such as crystalline silicon by introducing impurities is the basis of all transistor technology, which enables the functionality of today's electronic devices. In the past decades, organic semiconductors emerged as fascinating alternative to inorganics promising large-area processability on flexible-substrates and enormous versatility, as their opto-electronic properties, their bandgap in particular, can be tuned by their chemical structure. The concept of doping has only recently been adapted for organics by employing molecular dopants, where all novel display technology based on organic light emitting diodes (OLEDs) today uses doped conjugated materials. Despite enormous success in applications, however, the fundamental processes of doping are still poorly understood for organic semiconductors and material design remains largely empirical. In previous work, we identified the chemical interaction between semiconductor and dopant as key factor for their low doping efficiency, as, rather than ion pairs, charge transfer complexes tend to form and take over the role of the dopants, however, of significantly reduced strength.******In the present multidisciplinary research program, we aim to, first, exploit this novel understanding for regaining dopant strength by modifying the mechanism of intermolecular coupling. We will employ semiconductors capable of interacting with more than one dopant, which will make effective acceptor levels energetically more accessible. Alternatively, as charge-transfer complex formation is due to the coupling, we will inhibit the coupling by employing species of sterically shielded functional cores. Second, as we found that complex formation only occurs for molecular semiconductors, while conjugated polymers indeed form ion pairs upon doping, we aim to derive a unifying picture valid for both, from which their different doping behavior emerges naturally. To this end, we will increase the number of repeat units from the oligo- to the polymer limit, thereby assess the role of interaction locality, and observe the transition between the seemingly incongruous doping phenomenologies. Third, we aim to augment molecular doping by chemical selectivity through using Lewis acids as p-dopants, where charge transfer is restricted to species capable of acting as Lewis base. Finally, we will go beyond traditional doping to gain spatial control over the charge density in buried layers. Instead of dopant admixture, tailored energy-level alignment will render layers p-/n-doped via energy level pinning with the substrate. ******Overall, the proposed program will establish a complete picture of doping in organic semiconductors. It will enable knowledge-based chemical design for controlling charge density just as precisely as we customarily do today with inorganic semiconductors, for ultimately approaching similar functionality.
通过引入杂质的兴奋剂无机半导体,例如结晶硅,是所有晶体管技术的基础,它可以实现当今电子设备的功能。在过去的几十年中,有机半导体成为无机替代品的替代品,有望在柔性材料和巨大的多功能性上进行大面积的加工性,因为它们的光电电特性(尤其是它们的带隙)可以通过其化学结构来调节。兴奋剂的概念直到最近才通过使用分子掺杂剂来改编成有机物,那里的所有新型展示技术基于有机光发射二极管(OLEDS)今天使用掺杂的共轭材料。尽管在应用方面取得了巨大的成功,但是对于有机半导体和材料设计仍未对掺杂的基本过程仍然很少。在先前的工作中,我们确定了半导体和掺杂剂之间的化学相互作用是其低掺杂效率的关键因素,因为,而不是离子对,电荷转移络合物倾向于形成并接管掺杂剂的作用,但是,在本新型研究计划中,我们旨在改善Dopant的实力,以显着降低强度。耦合。我们将采用能够与多个掺杂剂进行交互的半导体,这将使有效的受体水平在能量上更容易获得。另外,由于电荷转移复合物的形成是由于耦合而引起的,因此我们将通过采用固有屏蔽功能核的物种来抑制耦合。其次,正如我们发现复合物形成仅对分子半导体发生,而掺杂时的共轭聚合物确实形成了离子对,我们的目的是从两者中得出有效的统一图片,它们的不同掺杂行为自然而然地出现。为此,我们将增加从寡聚量极限到聚合物极限的重复单位数量,从而评估相互作用位置的作用,并观察到看似不协调的兴奋剂现象学之间的过渡。第三,我们的目的是通过使用刘易斯酸作为p-掺杂剂来增强化学选择性的分子掺杂,在这种情况下,电荷转移仅限于能够充当刘易斯碱的物种。最后,我们将超越传统的兴奋剂,以获得对埋藏层的充电密度的空间控制。定制的能量级比对代替掺杂剂混合物,将通过用基板固定的能级固定层p-/n掺杂层。 ******总的来说,拟议的计划将建立有机半导体中掺杂的完整图片。它将启用基于知识的化学设计,以控制电荷密度,就像我们今天使用无机半导体一样,最终接近类似的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salzmann, Ingo其他文献
Unraveling the Microstructure of Molecularly Doped Poly(3-hexylthiophene) by Thermally Induced Dedoping
- DOI:
10.1021/acs.jpcc.8b08591 - 发表时间:
2018-11-15 - 期刊:
- 影响因子:3.7
- 作者:
Hase, Hannes;O'Neill, Katie;Salzmann, Ingo - 通讯作者:
Salzmann, Ingo
Design of Organic Semiconductors from Molecular Electrostatics
- DOI:
10.1021/cm1021257 - 发表时间:
2011-02-08 - 期刊:
- 影响因子:8.6
- 作者:
Heimel, Georg;Salzmann, Ingo;Koch, Norbert - 通讯作者:
Koch, Norbert
From Stage to Classroom – the Transfer of Knowledge through the Festival “Science on Stage”
从舞台到课堂 — 通过节日传递知识 — 舞台上的科学 —
- DOI:
10.1557/adv.2017.95 - 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
Tajmel, Tanja;Salzmann, Ingo - 通讯作者:
Salzmann, Ingo
Intrinsic Surface Dipoles Control the Energy Levels of Conjugated Polymers
- DOI:
10.1002/adfm.200901025 - 发表时间:
2009-12-23 - 期刊:
- 影响因子:19
- 作者:
Heimel, Georg;Salzmann, Ingo;Koch, Norbert - 通讯作者:
Koch, Norbert
Effect of Water, Oxygen, and Air Exposure on CH3NH3PbI3-xClx Perovskite Surface Electronic Properties
- DOI:
10.1002/aelm.201800307 - 发表时间:
2018-12-01 - 期刊:
- 影响因子:6.2
- 作者:
Ralaiarisoa, Maryline;Salzmann, Ingo;Koch, Norbert - 通讯作者:
Koch, Norbert
Salzmann, Ingo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salzmann, Ingo', 18)}}的其他基金
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Infrared Spectroscopy in the Ultra-High Vacuum
超高真空红外光谱
- 批准号:
RTI-2022-00520 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Research Tools and Instruments
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Physicochemical properties of graphene nanocomposites for solar cell applications
用于太阳能电池应用的石墨烯纳米复合材料的物理化学性质
- 批准号:
560736-2020 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Alliance Grants
Polypropylene (PP)/Thermoplastic elastomer (TPE) compounding to optimize physical properties
聚丙烯 (PP)/热塑性弹性体 (TPE) 混炼以优化物理性能
- 批准号:
543785-2019 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
DGECR-2018-00230 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
n-型有机热电:基于离子交换的分子掺杂薄膜抗衡阳离子调控
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
小分子有机酸/氮掺杂生物炭界面电子介导下活性氧的产生和多环芳烃的降解
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
小分子有机酸/氮掺杂生物炭界面电子介导下活性氧的产生和多环芳烃的降解
- 批准号:42277030
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
n-型有机热电:基于离子交换的分子掺杂薄膜抗衡阳离子调控
- 批准号:52273201
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
活性层掺杂有机分子提高非富勒烯基聚合物太阳能电池的稳定性及其机理研究
- 批准号:61904121
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding Molecular And Photo-Assisted Doping of Organic Electronic Materials
了解有机电子材料的分子和光辅助掺杂
- 批准号:
2330929 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Molecular doping of organic semiconductors and beyond: resolving fundamental processes and increasing doping efficiency
有机半导体及其他分子掺杂:解决基本过程并提高掺杂效率
- 批准号:
RGPIN-2018-05092 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
単一分子で発電する新原理有機太陽電池の実現
实现单分子发电新原理有机太阳能电池
- 批准号:
20J15419 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows