Studying semantic processing during language comprehension in humans at the single-cellular level

在单细胞水平上研究人类语言理解过程中的语义处理

基本信息

  • 批准号:
    10280022
  • 负责人:
  • 金额:
    $ 54.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-15 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Studying semantic processing during language comprehension in humans at the single-cellular level Humans are capable of communicating extraordinarily rich and nuanced meanings through language. This capacity surpasses that of all other animal species. Yet, despite a growing understanding of the network of brain areas that supports semantic processing, the precise derivation of linguistic meaning in neural tissue at the cellular-level and over the temporal scales of action potentials remains largely unknown. Over the past several years, our collaborative group has developed unique approaches that have allowed us to record from individual neurons in the language-dominant prefrontal and temporal cortex in participants performing structured linguistic tasks. Here, we will use this extraordinarily rare opportunity together with our group’s unique combined expertise in linguistic theory, human intraoperative neurophysiology, single-neuronal recordings and computational modeling in order to study in detail, for the first time, how semantic information is encoded at a cellular-level during speech and the degree to which single neurons respond selectivity to specific semantic domains, whether semantic information can be robustly decoded from neural activity, the extent to which it can be generalized across linguistic materials and the process by which these neuronal activities maps onto the fine-grained semantic relationships between individual words. Using structured linguistic manipulations and violations and by employing information-theoretic techniques, we will also crucially examine whether certain neurons in humans respond selectively to linguistic compared to non-linguistic information, how they engaged in lexico-semantic or syntactic processes, how they track the real-time context-dependent inferred meanings of individual words during speech and how these mixed representations and computations are distributed within frontal and temporal cortical populations in the language-dominant hemisphere. Taken together, this novel cross-institutional, inter-disciplinary collaborative effort promises to provide a fundamental new platform by which to begin studying the basic cellular mechanisms that underlie human language and unprecedented new insight into the cellular-level processing and representation of linguistic meaning during language comprehension in humans.
研究人类语言理解过程中的语义加工 单细胞水平 人类能够通过语言传达极其丰富和微妙的含义。这 能力超过了所有其他动物物种。然而,尽管对网络的了解越来越多, 支持语义处理的大脑区域,在神经组织中精确推导语言意义 细胞水平和时间尺度上的动作电位在很大程度上仍不清楚。在过去的时间里 几年来,我们的协作小组开发了独特的方法,使我们能够从 受试者在以语言为主的前额叶和颞叶皮质中的单个神经元 结构化的语言任务。在这里,我们将利用这个非常难得的机会,与我们小组的 在语言学理论、人类术中神经生理学、单神经元方面的独特综合专业知识 为了详细研究录音和计算建模,第一次,语义学 在语音过程中,信息是在细胞水平上编码的,以及单个神经元的反应程度 对特定语义域的选择性,能否从神经中稳健地解码语义信息 活动,它可以在多大程度上被推广到语言材料中,以及通过这些 神经元活动映射到单个单词之间的细粒度语义关系。vbl.使用 结构化的语言操纵和违规行为,并通过使用信息论技术,我们 还将关键地研究人类中的某些神经元是否对语言做出选择性反应 非语言信息,他们如何参与词汇语义或句法过程,他们如何跟踪 语音过程中单个单词的实时上下文相关的推断含义以及这些含义如何混合 表示和计算分布在额叶和颞叶皮质种群中 语言占主导地位的半球。综上所述,这一新颖的跨机构、跨学科 合作努力有望提供一个基本的新平台,通过这个平台开始研究 构成人类语言基础的细胞机制和对细胞水平的前所未有的新见解 人类语言理解过程中语言意义的加工与表征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ziv Williams其他文献

Ziv Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ziv Williams', 18)}}的其他基金

A formal group theory-based model in primates for studying interactive social behavior and its dysfunction
用于研究互动社会行为及其功能障碍的基于正式群体理论的灵长类动物模型
  • 批准号:
    10567456
  • 财政年份:
    2023
  • 资助金额:
    $ 54.89万
  • 项目类别:
Studying semantic processing during language comprehension in humans at the single-cellular level
在单细胞水平上研究人类语言理解过程中的语义处理
  • 批准号:
    10591471
  • 财政年份:
    2022
  • 资助金额:
    $ 54.89万
  • 项目类别:
An integrated single-neuronal, population-, local network- and stimulation-based prefrontal investigation of human social cognition
基于单神经元、群体、局部网络和刺激的人类社会认知的综合前额叶研究
  • 批准号:
    10615632
  • 财政年份:
    2021
  • 资助金额:
    $ 54.89万
  • 项目类别:
An integrated single-neuronal, population-, local network- and stimulation-based prefrontal investigation of human social cognition
基于单神经元、群体、局部网络和刺激的人类社会认知的综合前额叶研究
  • 批准号:
    10200517
  • 财政年份:
    2021
  • 资助金额:
    $ 54.89万
  • 项目类别:
An integrated single-neuronal, population-, local network- and stimulation-based prefrontal investigation of human social cognition
基于单神经元、群体、局部网络和刺激的人类社会认知的综合前额叶研究
  • 批准号:
    10396104
  • 财政年份:
    2021
  • 资助金额:
    $ 54.89万
  • 项目类别:
Using game theory in primates to study the distributed neuronal and time-casual underpinnings of interactive social behavior
利用灵长类动物的博弈论来研究交互式社交行为的分布式神经元和时间休闲基础
  • 批准号:
    10197791
  • 财政年份:
    2017
  • 资助金额:
    $ 54.89万
  • 项目类别:
Studying Memory Retrieval at the Dynamic Neural Network Level
研究动态神经网络级别的记忆检索
  • 批准号:
    8863829
  • 财政年份:
    2015
  • 资助金额:
    $ 54.89万
  • 项目类别:
Studying Memory Retrieval at the Dynamic Neural Network Level
研究动态神经网络级别的记忆检索
  • 批准号:
    9001383
  • 财政年份:
    2015
  • 资助金额:
    $ 54.89万
  • 项目类别:
Neuronal based prosthetic control of volitional movement
基于神经元的意志运动假肢控制
  • 批准号:
    7933184
  • 财政年份:
    2009
  • 资助金额:
    $ 54.89万
  • 项目类别:
Neuronal based prosthetic control of volitional movement
基于神经元的意志运动假肢控制
  • 批准号:
    8044854
  • 财政年份:
    2009
  • 资助金额:
    $ 54.89万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了