Materials and methods in quantifying cell mechanobiology

量化细胞力学生物学的材料和方法

基本信息

  • 批准号:
    RGPIN-2020-07169
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Spatiotemporal mechanical substrates and force microscopy advances to quantify cell contractility and viscoelasticity. Over the past decades, the forces and mechanical properties of biological systems have been recognized as an essential component across all scales of life. In particular, advents in elastic cell culture substrates have catalyzed a renaissance of cell biology, unlocking a previously unrecognized dimension in biological sciences. Understanding the physical mechanisms driving biological processes is a key challenge of the 21st century, and will resolve biological systems through an entirely new perspective of forces and mechanics, however, materials and methods to quantify these interactions are essential. Central to the active properties of most eukaryotic cells is that they are contractile, continuously exerting dynamic forces that pull on neighboring cells and their substrate. By culturing cells on deformable substrates, researchers have employed Traction Force Microscopy (TFM) to characterize the stiffness-dependent contractility of cells and the influence this contractility has on diverse biological processes from differentiation and proliferation to cancer metastasis. Bottlenecks of substrate stability, porosity, throughput, and technical complexity nevertheless have hampered adoption of these essential metrics in broader life-science applications. My lab has produced mechanically tunable silicone substrates for high-throughput contractile force measurements in diverse physiological and pathological contexts, and NSERC DG support has been critical in these advances. This DG proposal is focused on extending this frontier by developing (1) new materials and methodologies to quantify cell mechanics, with the goal of applying these to (2) quantify cell viscoelasticity. To do so, we will create silicone-based cell substrates that are a) elastically patterned in space; b) elastically switchable in time; c) adhesively patterned to direct single and collective cell structure dimensionality; and d) hydrogel substrates that locally contract to stretch cells and probe their mechanical response. My lab will build on our expertise with TFM to both simplify and enhance quantification of real-time cell contractility and mechanical properties. We will selectively modify key intracellular and intercellular proteins and quantify their contributions to contractile forces and cellular viscoelasticity. This DG program is built on a firm foundation of my lab's expertise in silicone substrate mechanics and cell force measurements, and well-supported by extensive microscopy and mechanical-characterization instrumentation. My DG program will drive a materials-based quantification of cell contractility and viscoelasticity. Due to the broad and fundamental utility of the innovations proposed here, I anticipate far-reaching impact in biological physics, quantitative biology, materials science, and experimental medicine.
时空机械基板和力显微镜的进步,以量化细胞收缩性和粘弹性。在过去的几十年里,生物系统的力和机械特性被认为是所有生命尺度的重要组成部分。特别是,弹性细胞培养基质的出现催化了细胞生物学的复兴,开启了生物科学中以前未被认识的维度。理解驱动生物过程的物理机制是21世纪世纪的一个关键挑战,并将通过一个全新的力和力学视角来解决生物系统,然而,量化这些相互作用的材料和方法是必不可少的。 大多数真核细胞的活动特性的核心是它们是可收缩的,持续地施加动态力来拉动邻近的细胞及其基质。通过在可变形基质上培养细胞,研究人员采用牵引力显微镜(TFM)来表征细胞的刚度依赖性收缩性以及这种收缩性对从分化和增殖到癌症转移的各种生物过程的影响。然而,基底稳定性、孔隙率、吞吐量和技术复杂性的瓶颈阻碍了这些基本指标在更广泛的生命科学应用中的采用。我的实验室已经生产出了机械可调的硅胶基质,用于在各种生理和病理环境中进行高通量收缩力测量,NSERC DG的支持在这些进展中至关重要。 该DG提案的重点是通过开发(1)量化细胞力学的新材料和方法来扩展这一前沿,目标是将其应用于(2)量化细胞粘弹性。为此,我们将创建基于硅树脂的细胞基底,其a)在空间上弹性图案化; B)在时间上弹性可切换; c)可重复图案化以指导单个和集体细胞结构维度;以及d)局部收缩以拉伸细胞并探测其机械响应的水凝胶基底。我的实验室将利用我们在TFM方面的专业知识,简化和增强实时细胞收缩性和机械特性的量化。我们将选择性地修饰关键的细胞内和细胞间蛋白质,并量化它们对收缩力和细胞粘弹性的贡献。这个DG计划是建立在我的实验室在有机硅基板力学和细胞力测量的专业知识的坚实基础上,并得到广泛的显微镜和机械表征仪器的良好支持。我的DG计划将推动基于材料的细胞收缩性和粘弹性的量化。由于这里提出的创新的广泛和根本的效用,我预计在生物物理学,定量生物学,材料科学和实验医学的深远影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ehrlicher, Allen其他文献

Cell migration through small gaps
Buckling, stiffening, and negative dissipation in the dynamics of a biopolymer in an active medium
Pattern-Based Contractility Screening, a Reference-Free Alternative to Traction Force Microscopy Methodology
  • DOI:
    10.1021/acsami.1c02987
  • 发表时间:
    2021-04-22
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Ghagre, Ajinkya;Amini, Ali;Ehrlicher, Allen
  • 通讯作者:
    Ehrlicher, Allen

Ehrlicher, Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ehrlicher, Allen', 18)}}的其他基金

Active Biological Mechanics
主动生物力学
  • 批准号:
    CRC-2017-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Materials and methods in quantifying cell mechanobiology
量化细胞力学生物学的材料和方法
  • 批准号:
    RGPIN-2020-07169
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Active Biological Mechanics
主动生物力学
  • 批准号:
    CRC-2017-00019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Active Biological Mechanics
主动生物力学
  • 批准号:
    1000231543-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Materials and methods in quantifying cell mechanobiology
量化细胞力学生物学的材料和方法
  • 批准号:
    RGPIN-2020-07169
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Regulated dissipation in active mechanobiology
主动力学生物学中的调节耗散
  • 批准号:
    RGPIN-2014-05843
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Active Biological Mechanics
主动生物力学
  • 批准号:
    1000231543-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Active Biological Mechanics
主动生物力学
  • 批准号:
    1000231543-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Characterizing the mechanical properties and biological impact of implantable cartilage replacement gels
表征可植入软骨替代凝胶的机械性能和生物学影响
  • 批准号:
    531466-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Regulated dissipation in active mechanobiology
主动力学生物学中的调节耗散
  • 批准号:
    RGPIN-2014-05843
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: User-Based Simulation Methods for Quantifying Sources of Error and Bias in Recommender Systems
职业:基于用户的模拟方法,用于量化推荐系统中的错误和偏差来源
  • 批准号:
    2415042
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Identifying and quantifying genetic effects on neurodevelopmental trajectories in adolescents
识别和量化遗传对青少年神经发育轨迹的影响
  • 批准号:
    10817321
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
  • 批准号:
    10730284
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Quantifying replication dynamics to predict clonal evolution and drug sensitivity in cancer cells using single-cell whole genome sequencing
使用单细胞全基因组测序量化复制动态以预测癌细胞的克隆进化和药物敏感性
  • 批准号:
    10603140
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
SCH: Quantifying and mitigating demographic biases of machine learning in real world radiology
SCH:量化和减轻现实世界放射学中机器学习的人口统计偏差
  • 批准号:
    10818941
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Quantifying the cognitive processes supporting computations of stochasticity and volatility in humans
量化支持人类随机性和波动性计算的认知过程
  • 批准号:
    10732422
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Quantifying the impact of vaccines on antibiotic use for respiratory infections in children
量化疫苗对儿童呼吸道感染抗生素使用的影响
  • 批准号:
    10606403
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Click Chemistry-Mediated Surface Protein Assay for Quantifying Subpopulations of Hepatocellular Carcinoma-associated Extracellular Vesicles
点击化学介导的表面蛋白测定法定量肝细胞癌相关细胞外囊泡亚群
  • 批准号:
    10737497
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Quantifying the frequency and diversity of spliced HBV mRNAs in HIV-HBV co-infection and their role in modulating viral transcription and host immune responses
量化 HIV-HBV 合并感染中 HBV mRNA 剪接的频率和多样性及其在调节病毒转录和宿主免疫反应中的作用
  • 批准号:
    10761937
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Quantifying the Brain Metabolism Underlying Task-Based BOLD Imaging
量化基于任务的 BOLD 成像背后的大脑代谢
  • 批准号:
    10432379
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了