Smart Automation for Bitumen Extraction and Oil Refining Processes
沥青提取和炼油过程的智能自动化
基本信息
- 批准号:561080-2020
- 负责人:
- 金额:$ 21.86万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The unique nature of bitumen extracting and heavy oil refining operations creates a host of technical challenges that generally cannot be resolved using conventional methodologies. Rather, state-of-the-art solutions are required, and these often emerge from the collaboration between companies and academia. This motivates the university, oil sands operators and refinery operators to form a partnership through the NSERC program. Satisfied and impressed by the cutting-edge research in our past NSERC CRD and IRC programs, core organizations from oil sands and refining industries-Imperial Oil, Shell Canada and Syncrude Canada-wish to progress their collaboration with the University through the NSERC Alliance program.The goal of this partnership is three-fold: continue the research from our previous Industrial Research Chair program; establish scientific foundations for advanced control of bitumen extraction and oil refining processes; provide scientific leadership to the industry in the area of process systems engineering and associated digital transformations. A key element to achieving these goals is the advancement of automation systems. This proposal endeavours to explore advanced data analytics and machine learning technologies and apply them to process industries, potentially leading to a transformation of process control practice. Through such a collaborative research partnership program, we will assist the industries in identifying and removing factors that limit operational efficiency in all stages involved in mining, in-situ recovery, bitumen extraction, upgrading, refining and utilities, and meeting the challenges of reducing production cost and environmental impact. Our integrated program will enable collaboration with the industry to convert research outcomes into implemented solutions and train highly qualified personnel with excellent job prospects. As a result, Canada will be better positioned to meet its future energy industry needs.
沥青提炼和重油精炼作业的独特性质造成了一系列技术挑战,这些挑战通常无法使用传统方法解决。相反,需要最先进的解决方案,而这些解决方案往往来自公司和学术界之间的合作。这促使大学、油砂运营商和炼油厂运营商通过NSERC计划形成合作伙伴关系。对我们过去NSERC CRD和IRC计划中的尖端研究感到满意和印象深刻的是,来自油砂和炼油行业的核心组织-帝国石油、加拿大壳牌和加拿大辛克鲁德-希望通过NSERC联盟计划促进与该大学的合作。这一合作伙伴关系的目标有三个:继续我们以前工业研究教席计划的研究;为先进的沥青提取和炼油过程控制建立科学基础;在过程系统工程和相关的数字转型领域为行业提供科学领导。实现这些目标的一个关键因素是自动化系统的进步。这项提议致力于探索先进的数据分析和机器学习技术,并将其应用于过程工业,可能导致过程控制实践的转变。通过这样的合作研究伙伴计划,我们将帮助行业识别和消除采矿、原地回收、沥青开采、升级、精炼和公用事业所涉及的所有阶段中限制运营效率的因素,并应对降低生产成本和环境影响的挑战。我们的集成计划将使我们能够与行业合作,将研究成果转化为实施的解决方案,并培养具有良好就业前景的高素质人员。因此,加拿大将更好地满足其未来能源行业的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huang, BiaoB其他文献
Huang, BiaoB的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
EU-Funded
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
- 批准号:
2335079 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
Cooperative Agreement
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
Research Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 21.86万 - 项目类别:
Continuing Grant














{{item.name}}会员




