Enabling Extreme Fast-Charging of Lithium-ion Batteries with Covalently-Joined Electrode Architectures - Phase I
利用共价连接电极架构实现锂离子电池的极快充电 - 第一阶段
基本信息
- 批准号:577513-2022
- 负责人:
- 金额:$ 9.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Idea to Innovation
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To slow and eliminate the catastrophic consequences of climate change, reducing our emissions of greenhouse gases is vital. Since 1999, the transportation sector in Canada has been emitting in excess of 700 megatonnes of carbon dioxide every year. This represents 27% of all emissions in the country. Zero-emission, battery electric vehicles (BEVs) provide a solution to this problem. However, the long recharging times of batteries (about one hour and a half) is one of the biggest obstacles in the way of mass adoption of BEVs by the public. Researchers at the University of Waterloo have recently disclosed a novel, chemical joining strategy that drastically improves fast-charging capabilities of both traditional and next-generation batteries. Here, we propose to develop this new electrode fabrication technique to enable otherwise traditional lithium-ion batteries to charge in minutes instead of hours. This discovery relies on making Li-ion battery electrode more conductive by physically joining all parts of the electrodes together from the active material used to store the energy to the metal foils that are used to connect the battery to the outside circuit to be powered. This electrode-making technique is designed to be integrated seamlessly into existing battery production lines that are present in industry today. The transition to BEVs concerns not only Canada but the rest of the world in the multi-trillion-dollar transportation industry. Countries such as the United States, China and all countries of the European union having pledged to phase out their fleet of fossil fuel burning vehicles in the coming decade. Therefore, developing fast-charging battery technologies in Canada gives us a chance to advance the country's prominence and competitiveness on the world-stage as a pole of technological innovation and will help in finding solutions to reduce Canada's dependency on oil.
为了减缓和消除气候变化的灾难性后果,减少我们的温室气体排放至关重要。自1999年以来,加拿大的运输部门每年排放的二氧化碳超过7亿吨。这占该国所有排放量的27%。零排放的电池电动汽车(BEV)为这一问题提供了解决方案。然而,电池充电时间长(约一个半小时)是大众大规模采用BEV的最大障碍之一。滑铁卢大学的研究人员最近披露了一种新颖的化学加入策略,该策略大大提高了传统电池和下一代电池的快速充电能力。在这里,我们建议开发这种新的电极制造技术,使传统的锂离子电池能够在几分钟而不是几小时内充电。这一发现依赖于通过将电极的所有部分从用于存储能量的活性材料到用于将电池连接到待供电的外部电路的金属箔物理连接在一起来使锂离子电池电极更具导电性。这种电极制造技术旨在无缝集成到当今工业中现有的电池生产线中。向BEV的过渡不仅关系到加拿大,也关系到世界其他地区的数万亿美元的运输业。美国、中国和欧盟所有国家都承诺在未来十年内逐步淘汰使用化石燃料的车辆。因此,在加拿大开发快速充电电池技术使我们有机会提升该国在世界舞台上的突出地位和竞争力,成为技术创新的一极,并将有助于找到减少加拿大对石油依赖的解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pope, MichaelA其他文献
Pope, MichaelA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pope, MichaelA', 18)}}的其他基金
Development of robust cathodes for pressurized, gravity-driven zinc-air batteries - Part II
开发用于加压重力驱动锌空气电池的坚固阴极 - 第二部分
- 批准号:
577077-2022 - 财政年份:2022
- 资助金额:
$ 9.11万 - 项目类别:
Alliance Grants
Scalable 2D-Materials Architectures (2D-MATURE): Synthesis and Processing, Characterization and Functionality, Implementation and Demonstrations (Inter. Collabor. - DFG-IRTG)
可扩展的 2D 材料架构 (2D-MATURE):合成和处理、表征和功能、实施和演示(Inter. Collabor. - DFG-IRTG)
- 批准号:
565360-2022 - 财政年份:2022
- 资助金额:
$ 9.11万 - 项目类别:
Collaborative Research and Training Experience
All-solid-state silicon anodes for next-generation Li-ion batteries
用于下一代锂离子电池的全固态硅阳极
- 批准号:
561228-2020 - 财政年份:2022
- 资助金额:
$ 9.11万 - 项目类别:
Alliance Grants
相似海外基金
The demographic consequences of extreme weather events in Australia
澳大利亚极端天气事件对人口的影响
- 批准号:
DP240102733 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Projects
Attributable impacts from extreme weather events
极端天气事件的影响
- 批准号:
NE/Z000203/1 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Research Grant
MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms
MCA:南极鱼类对热应激的细胞反应:极端钝温鱼蛋白质组的动态重组
- 批准号:
2322117 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Standard Grant
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
- 批准号:
2406927 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Standard Grant
REU Site: Research Experience for Undergraduates in Resilience Against Extreme Weather Events
REU 网站:本科生抵御极端天气事件的研究经验
- 批准号:
2349250 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Standard Grant
Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
- 批准号:
2319044 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Standard Grant
New biocatalysts for selective chemical oxidations under extreme conditions
用于极端条件下选择性化学氧化的新型生物催化剂
- 批准号:
DP240101500 - 财政年份:2024
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Projects