Large-Scale Quantum Simulations for Optoelectronic Materials Design

光电材料设计的大规模量子模拟

基本信息

  • 批准号:
    570426-2021
  • 负责人:
  • 金额:
    $ 11.67万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Quantum chemistry simulations that accurately predict the properties of materials are among the most highly anticipated applications of quantum computing. It is widely believed that quantum computers, which operate using the quantum states of matter rather than the 1's and 0's of traditional computers, will allow for higher accuracy when running chemical simulations. There has not yet been a convincing demonstration of this at scale, however. This proposal is a collaboration between Prof. Zachary Hudson, an expert on optoelectonic materials design, and OTI Lumionics Inc., Canada's leading private company working on organic light-emitting diode (OLED) technology. This project will develop large-scale quantum simulations for predicting the properties of materials for organic electronics. The iterative Qubit Coupled Cluster (iQCC) method will be used to calculate the electronic structures of optoelectronic materials, and to simulate their emission energies and emission spectra. These properties are critical to the design of OLED materials, since they principally determine their luminescent colours in a display. As quantum hardware powerful enough to run such large simulations does not yet exist, a purpose-built quantum simulator will be used to execute these simulations on classical hardware. This approach not only allows for much lower error rates than currently available quantum hardware, but will provide some of the first industrially relevant targets for the demonstration of quantum advantage - the point at which quantum computers reliably outperform classical hardware. Once these simulations have been validated, the team will then use iQCC to develop new advanced materials for organic electronics, demonstrating one of the first uses of quantum computing in materials design.
精确预测材料性质的量子化学模拟是量子计算最受期待的应用之一。人们普遍认为,使用物质的量子态而不是传统计算机的1和0进行操作的量子计算机,将在运行化学模拟时具有更高的准确性。然而,目前还没有令人信服的大规模证明。该提案是由光电材料设计专家Zachary Hudson教授和加拿大领先的有机发光二极管(OLED)技术私营公司OTI Lumionics Inc.合作完成的。这个项目将发展大规模的量子模拟来预测有机电子材料的性质。迭代量子比特耦合簇(iQCC)方法将用于计算光电材料的电子结构,并模拟其发射能量和发射光谱。这些特性对OLED材料的设计至关重要,因为它们主要决定了它们在显示器中的发光颜色。由于目前还没有强大到足以运行如此大规模模拟的量子硬件,因此将使用专用的量子模拟器在经典硬件上执行这些模拟。这种方法不仅允许比目前可用的量子硬件低得多的错误率,而且将为量子优势的演示提供一些第一个工业相关目标-量子计算机可靠地优于经典硬件的点。一旦这些模拟得到验证,该团队将使用iQCC开发用于有机电子的新型先进材料,展示量子计算在材料设计中的首次应用之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hudson, ZacharyZM其他文献

Hudson, ZacharyZM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Continuing Grant
Printed Infrared Quantum Dot Photodetectors and Large-scale Image Sensors
印刷红外量子点光电探测器和大型图像传感器
  • 批准号:
    DE230101711
  • 财政年份:
    2023
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Discovery Early Career Researcher Award
Quantum-Assisted Flood Modeling: Pioneering Large-Scale Analysis for Enhanced Risk Assessment
量子辅助洪水建模:开创性大规模分析以增强风险评估
  • 批准号:
    10083669
  • 财政年份:
    2023
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Small Business Research Initiative
New principal infrastructure based on large-scale quantum computing
基于大规模量子计算的新主体基础设施
  • 批准号:
    23H03398
  • 财政年份:
    2023
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploiting Quantum Computing for Large-Scale Transport Models
利用量子计算进行大规模运输模型
  • 批准号:
    10030783
  • 财政年份:
    2022
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Collaborative R&D
SaTC: CORE: Small: SLIQ: Securing Large-Scale Noisy-Intermediate Scale Quantum Computing
SaTC:核心:小型:SLIQ:确保大规模噪声中级量子计算的安全
  • 批准号:
    2129675
  • 财政年份:
    2022
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Standard Grant
RINGS: Bringing Post-Quantum Cryptography to Large-Scale NextG Systems
RINGS:将后量子密码学引入大规模 NextG 系统
  • 批准号:
    2147196
  • 财政年份:
    2022
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Continuing Grant
CDS&E: Enabling Quantum Technology Design Optimization Using Large-Scale Quantum Information Preserving Computational Electromagnetics Methods
CDS
  • 批准号:
    2202389
  • 财政年份:
    2022
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Standard Grant
Automatic qubit control for large-scale quantum computers enabled by neuromorphic computing and cryogenic bio-inspired hardware
通过神经形态计算和低温仿生硬件实现大规模量子计算机的自动量子位控制
  • 批准号:
    DGECR-2022-00100
  • 财政年份:
    2022
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Discovery Launch Supplement
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
  • 批准号:
    RGPIN-2019-06183
  • 财政年份:
    2022
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了