Multi-scale modelling of Refractory High-Entropy Alloys materials for Small Modular Reactors

小型模块化反应堆耐火高熵合金材料的多尺度建模

基本信息

  • 批准号:
    580475-2022
  • 负责人:
  • 金额:
    $ 8.74万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

SMRs are typically anticipated to have an electrical power output of less than 300 MWe (electric) or less than 1000 MWth (thermal). They offer many advantages, such as relatively small physical footprints, reduced capital investment, the ability to be sited in locations not possible for larger nuclear plants, and provisions for incremental power additions. During operation, the reactor pressure vessel material is exposed to high temperatures exceeding 1000°C, radiation, and corrosion, resulting in localized embrittlement of the vessel and welds in the reactor core. As the reactor vessel is considered irreplaceable, these demanding operating environments require the development of new alloy materials that can withstand their increased physical, chemical, thermal, and radiation-related challenges, as well as computational approaches to predict their behavior under operation conditions. High Entropy Alloys (HEAs) are a promising option, due to their composition which can be tuned over a wide range of possibilities to optimize high-temperature mechanical properties, radiation, and corrosion resistance, and obtain improved performances compared to conventional materials. However, current knowledge of HEAs properties is still less advanced compared with conventional alloys, and further studies are needed to assess the opportunities they offer. Refractory HEAs (RHEAs) are of particular interest to the nuclear community due to their retention of mechanical properties at high temperatures, reduced defect production, and resistance to irradiation-induced swelling and hardening. However, the mechanism behind these observations is still not well understood because of the lack of computational. In this regard, the proposed research activity will develop a Phase Field Crystal (PFC) model for HEAs to understand their properties as well as environmental degradation mechanisms. In addition to the design of new materials for the body of the SMRS vessel, our result will provide valuable information that can improve the reliability of systems, structures, and components during normal, abnormal, and long-term operations.
通常预计SMR的电力输出少于300 MWE(电动)或小于1000 MWTH(热)。它们提供了许多优势,例如相对较小的物理足迹,减少资本投资,可以放置在较大核电站不可能的位置的能力以及增加功率的规定。在操作过程中,反应堆压力容器材料暴露于超过1000°C,辐射和腐蚀的高温,从而导致局部对血管和反应堆芯中的温暖。由于反应堆容器被认为是不可替代的,因此这些苛刻的操作环境需要开发新的合金材料,这些材料可以承受其物理,化学,热和辐射相关的挑战,以及在操作条件下预测其行为的计算方法。高熵合金(HEAS)是一个承诺的选择,因为它们的组成可以在广泛的可能性中进行调整,以优化高温机械性能,辐射和耐腐蚀性,并与常规材料相比获得改进的性能。但是,与传统合金相比,当前对HEAS性质的知识仍然不那么先进,并且需要进一步的研究来评估它们提供的机会。难治性HEAS(RHEAS)由于在高温下保留了机械性能,减少缺陷产生以及对辐射引起的肿胀和硬化的耐药性,因此特别感兴趣。但是,由于缺乏计算,这些观察结果背后的机制仍未得到充分理解。在这方面,拟议的研究活动将开发出一个相位晶体晶体(PFC)模型,以了解其特性以及环境降解机制。除了设计新材料的SMRS船只外,我们的结果还将提供有价值的信息,可以在正常,异常和长期操作期间提高系统,结构和组件的可靠性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TetsassiFeugmo, ConrardGiresseTFGC其他文献

TetsassiFeugmo, ConrardGiresseTFGC的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
  • 批准号:
    32370477
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于容量驱动的大规模异构天线阵列关键技术研究
  • 批准号:
    62301460
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模强化学习任务的预测控制理论与方法研究
  • 批准号:
    62376179
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
  • 批准号:
    62376135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向非对称收发机的大规模MIMO传输理论与方法研究
  • 批准号:
    62301221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multi-scale ensemble modelling of coastal systems in a changing climate
气候变化下沿海系统的多尺度集成建模
  • 批准号:
    FT220100009
  • 财政年份:
    2023
  • 资助金额:
    $ 8.74万
  • 项目类别:
    ARC Future Fellowships
Multi-Scale Aerodynamic modelling of Helicopters/UAV in Urban Environments
城市环境中直升机/无人机的多尺度空气动力学建模
  • 批准号:
    572207-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Alliance Grants
Atomistic and Multi-scale Modelling of Functionalized Graphene and Hydrogen Diffusion in Advanced Materials
先进材料中功能化石墨烯和氢扩散的原子和多尺度建模
  • 批准号:
    RGPIN-2018-05808
  • 财政年份:
    2022
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Discovery Grants Program - Individual
Physics-informed Machine Learning Modelling for Multi-scale Building Energy Systems with Enhanced Accuracy and Interpretability
具有更高准确性和可解释性的多尺度建筑能源系统的基于物理的机器学习建模
  • 批准号:
    2725680
  • 财政年份:
    2022
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Studentship
Modelling the multi-scale spatial variations in the geomechanical properties within the discontinuities of the Sherwood Sandstone Group and their infl
对舍伍德砂岩群的不连续性内地质力学特性的多尺度空间变化及其影响进行建模
  • 批准号:
    2754950
  • 财政年份:
    2022
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了