Toward the accurate prediction of P450-mediated metabolism and adverse drug reactions using novel MM methods and QM-derived rules.

使用新的 MM 方法和 QM 衍生规则准确预测 P450 介导的代谢和药物不良反应。

基本信息

  • 批准号:
    469677-2014
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Despite the large investment in toxicology and clinical trials of drug candidates, adverse drug reactions remain a leading cause of drug withdrawal. This form of toxicity of drugs may only affect a small fraction of the patients and is not detected in clinical trials. However, if the drug is already on the market and widely used this toxicity may be fatal. Over the years, medicinal chemists have relied on "structural alerts" to identify potential toxicity of drugs and more specifically idiosyncratic toxicity. These functional groups are often activated by metabolic enzymes (e.g., P450) into reactive metabolites leading to the observed toxicity. However the presence of such a functional group does not always correlate with toxicity as the bioactivation can only occur if the drug is processed (i.e., recognized) by these enzymes and although widely used this approach is not reliable (C&EN 2012, 90, 34). Thus, computational prediction has become an avenue of research and in this context we have developed a program, IMPACTS (AstraZeneca/NSERC CRD funding 01/2010-02/2012) which predicts the site of metabolism of drugs, hence whether the drug and structural alert can be processed by the major P450s. We next decided to further improve this program in two ways. On one side, we thought to use quantum mechanical techniques to improve the ligand reactivity rules and more specifically their inclination to lead to reactive metabolites once bioactivated by P450s focusing on benzene derivatives. Second we investigated the development of a conceptually novel force field to compute drug potential energies more accurately. In a proof of concept study (Chemical Computing Group/NSERC CRD 08/2013-08/2014), we have shown that these two optimizations can indeed be possible. In the current proposal, we propose to further work on these two front and complete the development of a program predicting reactive metabolites hence, adverse drug reactions.
尽管对候选药物的毒理学和临床试验进行了大量投资,但药物不良反应仍然是停药的主要原因。这种形式的药物毒性可能只影响一小部分患者,并且在临床试验中未检测到。然而,如果这种药物已经上市并广泛使用,这种毒性可能是致命的。多年来,药物化学家一直依赖于“结构警报”来识别药物的潜在毒性,更具体地说是特异质毒性。这些官能团通常被代谢酶(例如,P450)转化为反应性代谢物,导致观察到的毒性。然而,这种官能团的存在并不总是与毒性相关,因为生物活化 仅在药物被处理时才发生(即,识别),并且尽管广泛使用,但这种方法并不可靠(C&EN 2012,90,34)。因此,计算预测已经成为研究的途径,在这种情况下,我们开发了一个程序,IMP 10(阿斯利康/NSERC CRD资助01/2010-02/2012),它预测药物代谢的位点,从而预测药物和结构警报是否可以被主要的P450处理。接下来,我们决定从两个方面进一步改进这个项目。一方面,我们认为使用量子力学技术来改善配体反应性规则,更具体地说,一旦被P450生物活化,它们倾向于导致反应性代谢物,重点是苯衍生物。其次,我们研究了一个概念新颖的力场的发展,以更准确地计算药物势能。在一项概念验证研究(化学计算组/NSERC CRD 08/2013-08/2014)中,我们已经证明了这两种优化确实是可能的。在当前的提案中,我们建议在这两个方面进一步开展工作,并完成预测反应性代谢物(即药物不良反应)的程序开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moitessier, Nicolas其他文献

Constrained Peptidomimetics Reveal Detailed Geometric Requirements of Covalent Prolyl Oligopeptidase Inhibitors
  • DOI:
    10.1021/jm901013a
  • 发表时间:
    2009-11-12
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Lawandi, Janice;Toumieux, Sylvestre;Moitessier, Nicolas
  • 通讯作者:
    Moitessier, Nicolas
Development of a Computational Tool to Rival Experts in the Prediction of Sites of Metabolism of Xenobiotics by P450s
  • DOI:
    10.1021/ci3003073
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Campagna-Slater, Valerie;Pottel, Joshua;Moitessier, Nicolas
  • 通讯作者:
    Moitessier, Nicolas
A naturally occurring G11S mutation in the 3C-like protease from the SARS-CoV-2 virus dramatically weakens the dimer interface.
  • DOI:
    10.1002/pro.4857
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Wang, Guanyu;Venegas, Felipe A.;Rueda, Andres M.;Weerasinghe, Nuwani W.;Uggowitzer, Kevin A.;Thibodeaux, Christopher J.;Moitessier, Nicolas;Mittermaier, Anthony K.
  • 通讯作者:
    Mittermaier, Anthony K.
3-Oxo-hexahydro-1H-isoindole-4-carboxylic Acid as a Drug Chiral Bicyclic Scaffold: Structure-Based Design and Preparation of Conformationally Constrained Covalent and Noncovalent Prolyl Oligopeptidase Inhibitors
  • DOI:
    10.1021/acs.jmedchem.5b01296
  • 发表时间:
    2016-05-12
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Mariaule, Gaelle;De Cesco, Stephane;Moitessier, Nicolas
  • 通讯作者:
    Moitessier, Nicolas
Directing/protecting groups mediate highly regioselective glycosylation of monoprotected acceptors
  • DOI:
    10.1016/j.tet.2011.07.026
  • 发表时间:
    2011-10-28
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lawandi, Janice;Rocheleau, Sylvain;Moitessier, Nicolas
  • 通讯作者:
    Moitessier, Nicolas

Moitessier, Nicolas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moitessier, Nicolas', 18)}}的其他基金

Integrating innovative computational and organic synthesis for efficient asymmetric catalyst discovery
整合创新计算和有机合成以实现高效的不对称催化剂发现
  • 批准号:
    RGPIN-2022-03383
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Molecular Mechanics Methods for Application in Drug Discovery and Design.
开发用于药物发现和设计的有效分子力学方法。
  • 批准号:
    550083-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Alliance Grants
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2018
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Toward the accurate prediction of adverse drug reactions and drug-drug interactions using novel MM methods and QM-derived rules
使用新型 MM 方法和 QM 衍生规则准确预测药物不良反应和药物相互作用
  • 批准号:
    505509-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2016
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Predictive computational methods and experimental studies for the discovery of carbohydrate-based catalysts and directing protecting groups
用于发现碳水化合物基催化剂和引导保护基团的预测计算方法和实验研究
  • 批准号:
    283318-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

非定常复杂流场的时空高精度高效率新格式的研究
  • 批准号:
    50376004
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Research Grant
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
  • 批准号:
    24K15172
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarification of mechanism of floor impact sound of dry-type double floor system and development of highly accurate performance prediction method
干式双层地板系统地板冲击声机理的阐明及高精度性能预测方法的开发
  • 批准号:
    23KJ0484
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
  • 批准号:
    10852318
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Artificial Intelligence Model for Accurate Prediction of Energy Consumption in Buildings at design stage (E-MAP)
设计阶段准确预测建筑能耗的人工智能模型(E-MAP)
  • 批准号:
    10081365
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative R&D
Multiplexed detection of cell-free M. Tuberculosis DNA and its drug-resistant variants in blood
血液中无细胞结核分枝杆菌 DNA 及其耐药变异体的多重检测
  • 批准号:
    10639855
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
  • 批准号:
    10566299
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Predicting Clinical Phenotypes in Crohn's Disease Using Machine Learning and Single-Cell 'omics
使用机器学习和单细胞组学预测克罗恩病的临床表型
  • 批准号:
    10586795
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Quick and Accurate Measurements of HIV Broadly Neutralizing Antibody Susceptibility
快速准确地测量 HIV 广泛中和抗体敏感性
  • 批准号:
    10676422
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了