Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)

增强基于回归的分析,以满足建筑工程的应用研究需求

基本信息

  • 批准号:
    RGPIN-2016-04687
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Regression analysis results in simple equations to sufficiently represent the real world systems in Construction Engineering historical data” problems as well as emerging “big data” problems in connection with rapid developments in computing (mobile, social, cloud), sensor technologies, parametric design databases underlying Building Information Models (BIM), and the Internet of Things. Yet, regression has not been able to catch up with rapid technology advances and practical application needs. In the real world, problems can be most mind-boggling, and the data often contain noises or missing information, while the problem-solving methods are expected to be computationally simple, fast to calibrate, straightforward to explain the reasoning logic, and easy to keep current as new data become available. In order to be acceptable and truly effective, user experiences of data-based, analytics-driven decision support systems in CEM must not be perceived as tapping a “black box” or requiring much “trial and error”.The proposed research program will enhance linear regression based analytics in support of modeling, prediction and improvement of productivity and cost performances in CEM. In parallel to the pursuit of simplicity, the research will address following crucial challenges: (1) how to enhance the sophistication and intelligence of linear-regression-based analytics so as to match up with the “non-linearity” native to most complicated application problems in CEM? (2) How to streamline high-dimensional regression equations by selecting the most dominant input features while retaining model accuracy? (3) How to define uncertainties associated with point-value predictions by analytically characterizing model prediction errors?The ultimate goal is to develop a systematic, scientific framework that can be generally applied to “break and conquer” real-world application problems, thus being capable to lend timely, effective, and quantitative decision support for engineering and management professionals in CEM. New knowledge to be created will substantially enrich existing CEM education curricula in regards to teaching quantitative methods on both graduate and undergraduate levels. The proposed research program will train highly qualified personnel along with delivering game-changing solutions that will make significant impact in the industry. Other related areas involving data-driven decision making will also benefit from the proposed grant.
回归分析产生简单的方程,以充分代表建筑工程历史数据问题中的真实的世界系统,以及与计算(移动的、社交、云)、传感器技术、建筑信息模型(BIM)底层的参数化设计数据库和物联网的快速发展相关的新兴“大数据”问题。然而,回归一直未能赶上快速的技术进步和实际应用需求。在真实的世界中,问题可能是最令人难以置信的,数据通常包含噪音或丢失的信息,而解决问题的方法应该是计算简单,快速校准,直接解释推理逻辑,并且容易在新数据可用时保持最新。为了被接受和真正有效的,用户体验的数据为基础的,分析驱动的决策支持系统在CEM必须不被视为挖掘一个“黑匣子”或需要很多的“试验和错误”。拟议的研究计划将加强线性回归为基础的分析,支持建模,预测和提高生产力和成本性能在CEM。在追求简单性的同时,研究将解决以下关键挑战:(1)如何提高基于线性回归的分析的复杂性和智能性,以便与CEM中最复杂的应用问题所固有的“非线性”相匹配?(2)如何通过选择最主要的输入特征来简化高维回归方程,同时保持模型的准确性?(3)如何通过分析模型预测误差来定义与点值预测相关的不确定性?最终目标是开发一个系统的,科学的框架,可以普遍适用于“突破和征服”现实世界的应用问题,从而能够借给及时,有效的,定量的决策支持工程和管理专业人员在CEM。 新的知识将大大丰富现有的CEM教育课程,在研究生和本科生水平上教授定量方法。拟议的研究计划将培养高素质的人才沿着提供改变游戏规则的解决方案,将在行业中产生重大影响。涉及数据驱动决策的其他相关领域也将受益于拟议的赠款。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu, Ming其他文献

CYP1B1 promotes colorectal cancer liver metastasis by enhancing the growth of metastatic cancer cells via a fatty acids-dependent manner.
  • DOI:
    10.21037/jgo-23-895
  • 发表时间:
    2023-12-31
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Jin, Lei;Huang, Ju;Guo, Lei;Zhang, Bo;Li, Qin;Li, Hui;Yu, Mincheng;Xie, Peiyi;Yu, Qiang;Chen, Zheng;Liu, Shuang;Xu, Yongfeng;Xiao, Yongsheng;Lu, Ming;Ye, Qinghai
  • 通讯作者:
    Ye, Qinghai
Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression.
星形胶质细胞中NLRP3炎症小体的解偶联蛋白2调节及其对抑郁症的影响
  • DOI:
    10.1016/j.redox.2016.08.006
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Du, Ren-Hong;Wu, Fang-Fang;Lu, Ming;Shu, Xiao-dong;Ding, Jian-Hua;Wu, Guangyu;Hu, Gang
  • 通讯作者:
    Hu, Gang
An analysis of human microRNA and disease associations.
人类microRNA和疾病关联的分析。
  • DOI:
    10.1371/journal.pone.0003420
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Lu, Ming;Zhang, Qipeng;Deng, Min;Miao, Jing;Guo, Yanhong;Gao, Wei;Cui, Qinghua
  • 通讯作者:
    Cui, Qinghua
Co-transplantation of autologous OM-MSCs and OM-OECs: a novel approach for spinal cord injury
自体 OM-MSC 和 OM-OEC 联合移植:治疗脊髓损伤的新方法
  • DOI:
    10.1515/revneuro-2015-0030
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Ge, Lite;Liu, Kai;Lu, Ming
  • 通讯作者:
    Lu, Ming
NCOA5 low expression correlates with survival in esophageal squamous cell carcinoma
  • DOI:
    10.1007/s12032-014-0376-y
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Chen, Guan-qing;Tian, Hui;Lu, Ming
  • 通讯作者:
    Lu, Ming

Lu, Ming的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu, Ming', 18)}}的其他基金

Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven decision support systems for integrated project delivery on structural steel projects
用于钢结构项目集成项目交付的数据驱动决策支持系统
  • 批准号:
    501012-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven decision support systems for integrated project delivery on structural steel projects
用于钢结构项目集成项目交付的数据驱动决策支持系统
  • 批准号:
    501012-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Data investigation and analytics development in support of plant maintenance operations planning
支持工厂维护运营规划的数据调查和分析开发
  • 批准号:
    530272-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven decision support systems for integrated project delivery on structural steel projects
用于钢结构项目集成项目交付的数据驱动决策支持系统
  • 批准号:
    501012-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cost and schedule comparison and risk analysis for pile foundation systems
桩基础系统的成本和进度比较以及风险分析
  • 批准号:
    499236-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Plus Grants Program

相似海外基金

Clustered Coefficient Regression Model-Based Estimators in Small Area Estimation
小区域估计中基于聚类系数回归模型的估计器
  • 批准号:
    2316353
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Coinsurance, health status and behavior: Regression discontnuity design approach based on date of birth
共同保险、健康状况和行为:基于出生日期的回归不连续设计方法
  • 批准号:
    23K01417
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancing Regression-based Analytics for Addressing Applied Research Needs in Construction Engineering & Management (CEM)
增强基于回归的分析,以满足建筑工程的应用研究需求
  • 批准号:
    RGPIN-2016-04687
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Global structure search of two-dimensional materials based on evolutionary algorithms and gaussian process regression
基于进化算法和高斯过程回归的二维材料全局结构搜索
  • 批准号:
    21K03419
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
  • 批准号:
    2151651
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Global significance test based on quantile regression with applications to genomic studies of Alzheimer’s disease
基于分位数回归的全局显着性检验及其在阿尔茨海默病基因组研究中的应用
  • 批准号:
    10303743
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Connecting late-life depression and cognition with statistical physics based connectomics and sparse Frechet regression
将晚年抑郁症和认知与基于统计物理学的连接组学和稀疏 Frechet 回归联系起来
  • 批准号:
    10190424
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Improving representativeness in non-probability surveys and causal inference with regularized regression and post-stratification
通过正则化回归和后分层提高非概率调查和因果推断的代表性
  • 批准号:
    10219956
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
Statistical analysis on moisture fluctuation and steel bar corrosion rate in carbonated concrete based on time-series regression
基于时间序列回归的碳化混凝土水分波动与钢筋腐蚀率统计分析
  • 批准号:
    20K14880
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Lifelong Learning for Sensor-based Precipitation Regression
基于传感器的降水回归的终身学习
  • 批准号:
    2458063
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了