Artificial Intelligence for the Condition Assessment of Critical Infrastructure
用于关键基础设施状况评估的人工智能
基本信息
- 批准号:569563-2021
- 负责人:
- 金额:$ 1.61万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goals of this partnership are to improve testing speed, reproducibility, and accuracy of tools and techniques commonly used for monitoring structural deterioration of concrete. We will use artificial intelligence (AI) and deep learning (DL) to develop automated tools for on-site visual crack inspection and for lab-based microscopic techniques for concrete damage assessment. Our solutions will include rapid and reliable tools to i) automate computation of the cracking index (CI), using a smartphone application ("app") to analyze, in real time, pictures taken in-situ during visual inspections of structures, and ii) to automate the Damage Rating Index (DRI) calculation by applying image analysis (IA) techniques to high-resolution stereomicroscope images of concrete specimens. The proposed technology will significantly enhance two important concrete monitoring techniques: a) computation of the CI, a preliminary assessment of cause and extent of damage based on visual inspection of structures, and b) computation of the DRI, in which core samples retrieved from structures are inspected in a lab-based microscopic protocol to diagnose cause and extent of damage in concrete affected by distress mechanisms such as internal swelling reactions (ISR). Both methods have important limitations: CI requires in-situ qualitative investigations and, although useful as a preliminary indicator, its ability to assess damage of affected concrete is still unclear for structures presenting multiple distress mechanisms and under distinct degrees of confinement and exposure conditions. Computation of the DRI is a time-consuming, expertise-based, lab procedure. Both CI and DRI are subjective in nature and rely heavily on the skill and experience of the person performing the analysis. This project will enable rapid and reliable assessments of the nature and extent of concrete damage in critical infrastructure prevalent in Canada, such as bridges, dams, and buildings. This will, in turn, enable timely and cost-effective preventative rehabilitation strategies, thus ensuring a safer and more reliable built environment.
该合作伙伴关系的目标是提高测试速度,再现性和准确性的工具和技术,通常用于监测混凝土的结构退化。我们将使用人工智能(AI)和深度学习(DL)开发自动化工具,用于现场视觉裂缝检查和基于实验室的微观技术,用于混凝土损坏评估。我们的解决方案将包括快速可靠的工具,用于i)自动计算开裂指数(CI),使用智能手机应用程序(“应用程序”)来真实的分析结构目视检查期间现场拍摄的照片,以及ii)通过将图像分析(IA)技术应用于混凝土样本的高分辨率立体显微镜图像来自动计算损坏评级指数(DRI)。 拟议的技术将大大加强两个重要的具体监测技术:a)计算CI,基于结构的目视检查对损坏原因和程度进行初步评估,以及B)计算DRI,在实验室里检查从建筑物中取出的岩芯样本基于微观协议来诊断混凝土损坏的原因和程度,受到内部膨胀反应(ISR)等损坏机制的影响。这两种方法都有重要的局限性:CI需要在现场定性调查,虽然有用的初步指标,其能力,以评估受影响的混凝土损坏仍然是不清楚的结构呈现多种遇险机制和不同程度的限制和曝光条件。DRI的计算是一个耗时的、基于专业知识的实验室程序。CI和DRI本质上都是主观的,并且严重依赖于执行分析的人的技能和经验。该项目将能够对加拿大主要基础设施(如桥梁、水坝和建筑物)的混凝土损坏的性质和程度进行快速可靠的评估。这反过来又将有助于及时和具有成本效益的预防性修复战略,从而确保更安全和更可靠的建筑环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MorettiSanchez, LeandroFranciscoLF其他文献
MorettiSanchez, LeandroFranciscoLF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MorettiSanchez, LeandroFranciscoLF', 18)}}的其他基金
Encapsulating soil residues in concrete: an eco-efficient approach
将土壤残留物封装在混凝土中:一种生态高效的方法
- 批准号:
571593-2021 - 财政年份:2022
- 资助金额:
$ 1.61万 - 项目类别:
Alliance Grants
Learning from the Champlain Bridge - Toward improved condition assessment diagnostics and prognostics supporting more effective bridge maintenance and rehabilitation
向尚普兰大桥学习 - 改进状况评估诊断和预测,支持更有效的桥梁维护和修复
- 批准号:
566567-2021 - 财政年份:2022
- 资助金额:
$ 1.61万 - 项目类别:
Alliance Grants
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
EU-Funded
University of West London and Turing Intelligence Technology Limited KTP (23-24 R3)
西伦敦大学与图灵智能科技有限公司KTP (23-24 R3)
- 批准号:
10082602 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Knowledge Transfer Network
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Research Grant
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Fellowship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Continuing Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 1.61万 - 项目类别:
Standard Grant