Toward Personalized Explainable AI
迈向个性化可解释人工智能
基本信息
- 批准号:RGPIN-2022-03727
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The AI community is increasingly interested in understanding how to build artifacts that, in addition to performing useful tasks, are well accepted and trusted by their users. It is undeniable that the explainability of an AI system can be an important factor for acceptance and trust. However, there is still limited understanding of the actual relationship between explainability, acceptance, and trust and which factors might impact this relationship. In particular, although existing research on Explainable AI (XAI) suggests that having AI systems explain their inner workings to their end users can help foster transparency, interpretability, and trust. there are also results suggesting that such explanations are not always wanted by or beneficial for all users. These results indicate that research in XAI needs to go beyond one-size-fits-all ex-planations and investigate AI systems that can personalize explanations of their behaviors to the user's specific needs. There is general agreement that such needs may depend on context, e.g., the type of AI application and criticality of the targeted tasks, but there is also evidence that, given the same context, user differences play a role in defining when and how explanations may be useful and effective. These results call for the need to investigate personalized XAI, namely how to create AI systems that understand to whom, when, and how to deliver effective explanations of their actions and decisions. This is the objective of this proposal. AI-driven personalization has been an active field of research for several decades, spanning fields such as recommender systems, intelligent-tutoring systems, conversational agents, and affect-aware systems. To provide personalization, an AI system needs to have an adaptive loop in which it acquires a model of its user by inferring relevant user properties from available observations and decides how to personalize its behavior accordingly, to favor at best the goal of the interaction In this proposal, we frame explanations as yet another element of personalization in the adaptive loop, where the system ascertains if and how to explain its behavior to the user based on its best understanding of user properties specifically relevant to evaluate the need for explanation. What these relevant properties are, how an AI system can assess them and how it can respond with adequate personalization of explanations is all still largely unknown. The proposed research aims to contribute to filling these gaps
人工智能社区越来越有兴趣了解如何构建工件,除了执行有用的任务外,还能被用户接受和信任。不可否认,人工智能系统的可解释性可能是接受和信任的重要因素。然而,对可解释性、接受性和信任之间的实际关系以及哪些因素可能影响这种关系的理解仍然有限。特别是,尽管现有的可解释人工智能(XAI)研究表明,让人工智能系统向最终用户解释其内部工作原理有助于提高透明度、可解释性和信任度。还有一些结果表明,并非所有用户都需要这种解释或对所有用户都有益。这些结果表明,XAI的研究需要超越一刀切的解释,并调查可以根据用户的特定需求对其行为进行个性化解释的AI系统。人们普遍认为,这种需要可能取决于具体情况,例如,人工智能应用程序的类型和目标任务的关键性,但也有证据表明,在相同的背景下,用户差异在定义解释何时以及如何有用和有效方面发挥了作用。这些结果要求研究个性化的XAI,即如何创建AI系统,以了解谁,何时以及如何有效地解释他们的行动和决策。这就是本提案的目的。几十年来,人工智能驱动的个性化一直是一个活跃的研究领域,涵盖了推荐系统、智能辅导系统、会话代理和情感感知系统等领域。为了提供个性化,人工智能系统需要有一个自适应循环,在这个循环中,它通过从可用的观察结果中推断相关的用户属性来获取其用户的模型,并决定如何相应地个性化其行为,以最大限度地支持交互的目标。在这个提议中,我们将解释框定为自适应循环中个性化的另一个元素,其中系统基于其对与评估解释需要特别相关的用户属性的最佳理解来确定是否以及如何向用户解释其行为。这些相关的属性是什么,人工智能系统如何评估它们,以及它如何通过充分的个性化解释做出反应,这些在很大程度上仍然是未知的。拟议的研究旨在为填补这些空白做出贡献
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Conati, Cristina其他文献
Comparing and Combining Interaction Data and Eye-tracking Data for the Real-time Prediction of User Cognitive Abilities in Visualization Tasks
- DOI:
10.1145/3301400 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:3.4
- 作者:
Conati, Cristina;Lalle, Sebastien;Toker, Dereck - 通讯作者:
Toker, Dereck
Distance art groups for women with breast cancer: guidelines and recommendations
- DOI:
10.1007/s00520-005-0012-7 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:3.1
- 作者:
Collie, Kate;Bottorff, Joan L.;Conati, Cristina - 通讯作者:
Conati, Cristina
Exploratory versus Explanatory Visual Learning Analytics: Driving Teachers' Attention through Educational Data Storytelling
- DOI:
10.18608/jla.2018.53.6 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Echeverria, Vanessa;Martinez-Maldonado, Roberto;Conati, Cristina - 通讯作者:
Conati, Cristina
Applying a Framework for Student Modeling in Exploratory Learning Environments: Comparing Data Representation Granularity to Handle Environment Complexity
- DOI:
10.1007/s40593-016-0131-y - 发表时间:
2017-06-01 - 期刊:
- 影响因子:4.9
- 作者:
Fratamico, Lauren;Conati, Cristina;Roll, Ido - 通讯作者:
Roll, Ido
Understanding Attention to Adaptive Hints in Educational Games: An Eye-Tracking Study
- DOI:
10.1007/s40593-013-0002-8 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:4.9
- 作者:
Conati, Cristina;Jaques, Natasha;Muir, Mary - 通讯作者:
Muir, Mary
Conati, Cristina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Conati, Cristina', 18)}}的其他基金
AI-Driven personalized support to foster computational thinking skills in early K12 education
人工智能驱动的个性化支持,培养早期 K12 教育中的计算思维技能
- 批准号:
567500-2021 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Alliance Grants
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
492968-2016 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Eye-tracking for Intelligent Personalization of Information Visualization
用于信息可视化智能个性化的眼球追踪
- 批准号:
RTI-2019-00711 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Research Tools and Instruments
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
492968-2016 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Personalized Online Adaptive Learning System
个性化在线自适应学习系统
- 批准号:
23K20186 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Personalized Maternal Care Decision Support System for Underserved Populations
职业:针对服务不足人群的个性化孕产妇护理决策支持系统
- 批准号:
2339992 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
- 批准号:
23K25176 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
- 批准号:
10103541 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
EU-Funded
Modular Laser Sources For Sustainable Production Of Short Personalized Production Series (WAVETAILOR)
用于短个性化生产系列可持续生产的模块化激光源 (WAVETAILOR)
- 批准号:
10091981 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
EU-Funded
5G4PHealth: Enhanced 5G-Powered Platform for Predictive Preventive Personalized and Participatory Healthcare
5G4PHealth:增强型 5G 支持平台,用于预测、预防、个性化和参与式医疗保健
- 批准号:
10093679 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative R&D
Biomarker-Based Platform for Early Diagnosis of Chronic Liver Disease to Enable Personalized Therapy (LIVERAIM)
基于生物标志物的慢性肝病早期诊断平台,以实现个性化治疗(LIVERAIM)
- 批准号:
10087822 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
EU-Funded
HSI Implementation and Evaluation Project: Increasing Computer Science Undergraduate Retention through Predictive Modeling and Early, Personalized Academic Interventions
HSI 实施和评估项目:通过预测建模和早期个性化学术干预提高计算机科学本科生的保留率
- 批准号:
2345378 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
- 批准号:
2345655 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant