AI-Driven personalized support to foster computational thinking skills in early K12 education
人工智能驱动的个性化支持,培养早期 K12 教育中的计算思维技能
基本信息
- 批准号:567500-2021
- 负责人:
- 金额:$ 7.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Both research and industry in the field of educational technology has recently focused on using game design (GD) to support the acquisition of computational thinking (CT) skills. The learning environments that support these GD activities have been proven to be valuable for foster CT skills, however, they can be challenging to some students due to their open-ended and exploratory nature. Furthermore, due to the fact that CT skills are a rather recent concepts in the K12 curriculum, teachers and after-school instructors may not have yet the required skillset to alleviate these students' difficulties. Our goal is to address this challenge by designing AI-driven adaptive support to detect in real-time those students that may encounter difficulties, and provide them with relevant adaptive support. This support can include the delivery of cues, the design of virtual companion, and the promotion of collaboration among students with compatible skillsets. We will also provide support to the teachers by providing them with visual indicators on the state of the class and of their individual students. Our project aims to advance the current practice and technology to support CT teaching at schools in early K-12 education, which ultimately will be highly valuable to the Canadian educational community, including STEM teachers who wish to leverage GD environments as part of their curriculum, and industry that offers dedicated programs to schools, after-schools and camps related to STEM education. As part of our research we will also tackle the issue of the underrepresentation of female students in CS and CT education, by examining their specific needs and how to meet them via dedicated interaction and support.
教育技术领域的研究和产业最近都集中在使用游戏设计(GD)来支持计算思维(CT)技能的获得。支持这些GD活动的学习环境已被证明对培养CT技能很有价值,但是,由于其开放性和探索性,对一些学生来说可能具有挑战性。此外,由于计算机技术在K12课程中是一个相当新的概念,教师和课后辅导员可能还没有所需的技能来减轻这些学生的困难。我们的目标是通过设计人工智能驱动的自适应支持来应对这一挑战,以实时检测那些可能遇到困难的学生,并为他们提供相关的自适应支持。这种支持可以包括提供线索,设计虚拟伴侣,以及促进具有兼容技能的学生之间的合作。我们还将为教师提供支持,为他们提供有关班级和学生个人状况的视觉指示器。我们的项目旨在推进当前的实践和技术,以支持学校在早期K-12教育中的CT教学,这最终将对加拿大教育界非常有价值,包括希望利用GD环境作为课程一部分的STEM教师,以及为学校提供专门课程的行业,课后和与STEM教育相关的营地。作为我们研究的一部分,我们还将解决CS和CT教育中女学生代表性不足的问题,通过研究她们的具体需求以及如何通过专门的互动和支持来满足她们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Conati, Cristina其他文献
Comparing and Combining Interaction Data and Eye-tracking Data for the Real-time Prediction of User Cognitive Abilities in Visualization Tasks
- DOI:
10.1145/3301400 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:3.4
- 作者:
Conati, Cristina;Lalle, Sebastien;Toker, Dereck - 通讯作者:
Toker, Dereck
Distance art groups for women with breast cancer: guidelines and recommendations
- DOI:
10.1007/s00520-005-0012-7 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:3.1
- 作者:
Collie, Kate;Bottorff, Joan L.;Conati, Cristina - 通讯作者:
Conati, Cristina
Exploratory versus Explanatory Visual Learning Analytics: Driving Teachers' Attention through Educational Data Storytelling
- DOI:
10.18608/jla.2018.53.6 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Echeverria, Vanessa;Martinez-Maldonado, Roberto;Conati, Cristina - 通讯作者:
Conati, Cristina
Applying a Framework for Student Modeling in Exploratory Learning Environments: Comparing Data Representation Granularity to Handle Environment Complexity
- DOI:
10.1007/s40593-016-0131-y - 发表时间:
2017-06-01 - 期刊:
- 影响因子:4.9
- 作者:
Fratamico, Lauren;Conati, Cristina;Roll, Ido - 通讯作者:
Roll, Ido
Understanding Attention to Adaptive Hints in Educational Games: An Eye-Tracking Study
- DOI:
10.1007/s40593-013-0002-8 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:4.9
- 作者:
Conati, Cristina;Jaques, Natasha;Muir, Mary - 通讯作者:
Muir, Mary
Conati, Cristina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Conati, Cristina', 18)}}的其他基金
Toward Personalized Explainable AI
迈向个性化可解释人工智能
- 批准号:
RGPIN-2022-03727 - 财政年份:2022
- 资助金额:
$ 7.33万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2021
- 资助金额:
$ 7.33万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2020
- 资助金额:
$ 7.33万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2019
- 资助金额:
$ 7.33万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
492968-2016 - 财政年份:2018
- 资助金额:
$ 7.33万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2018
- 资助金额:
$ 7.33万 - 项目类别:
Discovery Grants Program - Individual
Eye-tracking for Intelligent Personalization of Information Visualization
用于信息可视化智能个性化的眼球追踪
- 批准号:
RTI-2019-00711 - 财政年份:2018
- 资助金额:
$ 7.33万 - 项目类别:
Research Tools and Instruments
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2017
- 资助金额:
$ 7.33万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
492968-2016 - 财政年份:2017
- 资助金额:
$ 7.33万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2016
- 资助金额:
$ 7.33万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别:
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
- 批准号:
10751099 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别:
Scalable and Interoperable framework for a clinically diverse and generalizable sepsis Biorepository using Electronic alerts for Recruitment driven by Artificial Intelligence (short title: SIBER-AI)
使用人工智能驱动的招募电子警报的临床多样化和通用脓毒症生物库的可扩展和可互操作框架(简称:SIBER-AI)
- 批准号:
10576015 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
- 批准号:
10814620 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别:
Community-Driven Indigenous Research, Cultural Strengths & Leadership to Advance Equity in Drug Use Outcomes (CIRCLE)
社区驱动的本土研究、文化优势
- 批准号:
10713129 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别:
I-Corps: Personalized AI-Driven Training for Construction Workers with Non-Intrusive Measures
I-Corps:采用非侵入性措施为建筑工人提供个性化人工智能驱动培训
- 批准号:
2330278 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别:
Standard Grant
SBIR Phase II: A machine learning-driven telerehabilitation solution designed to promote the personalized recovery of hand and arm functions post stroke
SBIR 第二阶段:机器学习驱动的远程康复解决方案,旨在促进中风后手部和手臂功能的个性化恢复
- 批准号:
2226174 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别:
Cooperative Agreement
A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
- 批准号:
10826595 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别:
I-Corps: Artificial Intelligence Driven Prediction, Monitoring, and Management of Unwanted Behavior in Patients with Autism: Realtime, Smart, Automated, and Personalized
I-Corps:人工智能驱动的自闭症患者不良行为的预测、监测和管理:实时、智能、自动化和个性化
- 批准号:
2344599 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别:
Standard Grant
Establishing Multimodal Brain Biomarkers Using Data-driven Analyticsfor Treatment Selection in Depression
使用数据驱动分析建立多模式脑生物标志物以选择抑郁症的治疗方法
- 批准号:
10660219 - 财政年份:2023
- 资助金额:
$ 7.33万 - 项目类别: