Eye-tracking for Intelligent Personalization of Information Visualization
用于信息可视化智能个性化的眼球追踪
基本信息
- 批准号:RTI-2019-00711
- 负责人:
- 金额:$ 8.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Research Tools and Instruments
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
User-adaptive interaction, a field at the intersection of artificial intelligence (AI) and human-computer interaction (HCI), aims to create intelligent interactive systems that provide users with a personalized interaction experience by modelling and adapting in real-time to relevant users' needs and abilities. The benefits of user-adaptive interaction have been shown for a variety of tasks and applications (Jameson 2009). This proposal supports research at the forefront of this field by investigating a new domain of application for user-adaptive interaction: user-adaptive visualizations***Infovis is becoming increasingly important given the continuous growth of applications that allow users to view and manipulate complex data, not only in professional settings, but also for personal usage (e.g., monitoring fitness, tracking interactions in social media, understanding home resources consumption (Huang et al. 2015). To date, visualizations are typically designed based on the type of tasks and data to be handled, without taking into account user differences. However, there is mounting evidence that visualization effectiveness depends on a user's specific preferences, abilities, states, and even personality. The eye-tracking equipment requested in this proposal will be instrumental to investigate how to create visualizations that can infer the relevant user's characteristics from how users look at them, and personalized the visualization accordingly, to best suit the users needs and abilities. **
用户自适应交互是人工智能(AI)和人机交互(HCI)的交叉领域,旨在创建智能交互系统,通过实时建模和适应相关用户的需求和能力,为用户提供个性化的交互体验。用户自适应交互的好处已经在各种任务和应用中得到了证明(Jameson 2009)。该提案通过调查用户自适应交互的新应用领域来支持该领域前沿的研究:用户自适应可视化 *Infovis变得越来越重要,因为应用程序的持续增长允许 不仅在专业设置中,而且在个人使用中(例如,监测健身,跟踪社交媒体中的互动,了解家庭资源消耗(Huang et al. 2015)。到目前为止,可视化通常是基于要处理的任务和数据的类型来设计的,而不考虑用户的差异。然而,越来越多的证据表明,可视化效果取决于用户的特定偏好、能力、状态甚至个性。本提案中要求的眼动跟踪设备将有助于研究如何创建可视化,该可视化可以从用户如何看待它们来推断相关用户的特征,并相应地个性化可视化,以最好地满足用户的需求和能力。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Conati, Cristina其他文献
Comparing and Combining Interaction Data and Eye-tracking Data for the Real-time Prediction of User Cognitive Abilities in Visualization Tasks
- DOI:
10.1145/3301400 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:3.4
- 作者:
Conati, Cristina;Lalle, Sebastien;Toker, Dereck - 通讯作者:
Toker, Dereck
Distance art groups for women with breast cancer: guidelines and recommendations
- DOI:
10.1007/s00520-005-0012-7 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:3.1
- 作者:
Collie, Kate;Bottorff, Joan L.;Conati, Cristina - 通讯作者:
Conati, Cristina
Exploratory versus Explanatory Visual Learning Analytics: Driving Teachers' Attention through Educational Data Storytelling
- DOI:
10.18608/jla.2018.53.6 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Echeverria, Vanessa;Martinez-Maldonado, Roberto;Conati, Cristina - 通讯作者:
Conati, Cristina
Applying a Framework for Student Modeling in Exploratory Learning Environments: Comparing Data Representation Granularity to Handle Environment Complexity
- DOI:
10.1007/s40593-016-0131-y - 发表时间:
2017-06-01 - 期刊:
- 影响因子:4.9
- 作者:
Fratamico, Lauren;Conati, Cristina;Roll, Ido - 通讯作者:
Roll, Ido
Understanding Attention to Adaptive Hints in Educational Games: An Eye-Tracking Study
- DOI:
10.1007/s40593-013-0002-8 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:4.9
- 作者:
Conati, Cristina;Jaques, Natasha;Muir, Mary - 通讯作者:
Muir, Mary
Conati, Cristina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Conati, Cristina', 18)}}的其他基金
Toward Personalized Explainable AI
迈向个性化可解释人工智能
- 批准号:
RGPIN-2022-03727 - 财政年份:2022
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
AI-Driven personalized support to foster computational thinking skills in early K12 education
人工智能驱动的个性化支持,培养早期 K12 教育中的计算思维技能
- 批准号:
567500-2021 - 财政年份:2021
- 资助金额:
$ 8.97万 - 项目类别:
Alliance Grants
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2021
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2020
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2019
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
492968-2016 - 财政年份:2018
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2018
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2017
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
492968-2016 - 财政年份:2017
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Adaptation and Personalization for Information Visualization
信息可视化的适应和个性化
- 批准号:
RGPIN-2016-04611 - 财政年份:2016
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
- 批准号:52006188
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
面向矿区地表大形变的PSI/DInSAR与Offset-tracking深度融合方法研究
- 批准号:51804297
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
非规则网格的front tracking 方法研究与程序实现
- 批准号:11176015
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:联合基金项目
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
- 批准号:31170976
- 批准年份:2011
- 资助金额:64.0 万元
- 项目类别:面上项目
多流体ALE模式下Front tracking 界面追踪法研究
- 批准号:10901022
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Intelligent DEPression Tracking (I-DEPT) - A Novel, Longitudinal and Multi-Modal Machine Learning Framework for Quantifying Depression Symptoms
智能抑郁追踪 (I-DEPT) - 一种新颖的、纵向的、多模态的机器学习框架,用于量化抑郁症状
- 批准号:
10050419 - 财政年份:2023
- 资助金额:
$ 8.97万 - 项目类别:
Collaborative R&D
Advancing Object Detection and Tracking Frontiers in Intelligent Vision-Based Applications
推进基于智能视觉的应用中的物体检测和跟踪前沿
- 批准号:
RGPIN-2022-03015 - 财政年份:2022
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
Intelligent Model-Based Tracking of Natural Gait Motion in a Network of Depth Sensors
深度传感器网络中基于智能模型的自然步态运动跟踪
- 批准号:
RGPIN-2019-06434 - 财政年份:2022
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligent Augmented Reality Police E-Trainer for Culturally Competent De-Escalation and Non-Lethal Force Police Training to Eradicate Police Violence Against Black Males
人工智能增强现实警察电子培训器,用于文化能力降级和非致命武力警察培训,以消除警察针对黑人男性的暴力行为
- 批准号:
10601754 - 财政年份:2022
- 资助金额:
$ 8.97万 - 项目类别:
Intelligent Model-Based Tracking of Natural Gait Motion in a Network of Depth Sensors
深度传感器网络中基于智能模型的自然步态运动跟踪
- 批准号:
RGPIN-2019-06434 - 财政年份:2021
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
SCC-PG: Fostering Aging-in-Place and Autonomy in Elderly Persons through Intelligent Tracking
SCC-PG:通过智能追踪促进老年人就地养老和自主
- 批准号:
1952236 - 财政年份:2020
- 资助金额:
$ 8.97万 - 项目类别:
Standard Grant
Intelligent Model-Based Tracking of Natural Gait Motion in a Network of Depth Sensors
深度传感器网络中基于智能模型的自然步态运动跟踪
- 批准号:
RGPIN-2019-06434 - 财政年份:2020
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual
Covid-19: Intelligent Workforce Tracking and Tasking through Infrastructure Free Indoor Localisation
Covid-19:通过无基础设施的室内定位实现智能劳动力跟踪和任务分配
- 批准号:
77726 - 财政年份:2020
- 资助金额:
$ 8.97万 - 项目类别:
Collaborative R&D
Adaptive interventions for intelligent user interfaces based on user's eye-tracking data
基于用户眼动追踪数据的智能用户界面的自适应干预
- 批准号:
540937-2019 - 财政年份:2019
- 资助金额:
$ 8.97万 - 项目类别:
University Undergraduate Student Research Awards
Intelligent Model-Based Tracking of Natural Gait Motion in a Network of Depth Sensors
深度传感器网络中基于智能模型的自然步态运动跟踪
- 批准号:
RGPIN-2019-06434 - 财政年份:2019
- 资助金额:
$ 8.97万 - 项目类别:
Discovery Grants Program - Individual