Turning an enemy into an ally: Privacy In Machine Learning (Pri-ML)
化敌为友:机器学习中的隐私 (Pri-ML)
基本信息
- 批准号:RGPIN-2022-03721
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data has great potential to provide world-changing solutions to pressing problems such as global hunger and climate change. However, sharing data at the scale required to tackle large problems comes with privacy concerns. My long-term goal is to provide methodological foundations that allow us to properly use and share these potentially instrumental data without privacy violations. Recent progress in privacy-preserving machine learning has centered around differential privacy, due to its provability. However, preserving privacy requires injecting noise in the machine learning system, leading to a fundamental trade-off between privacy and accuracy. The trade-off worsens when the algorithm's output is "sensitive" to any changes in its input, as the noise magnitude has to increase to hide that change. In Part A of the research program, I propose novel methods that can effectively limit the sensitivity. The second challenge arises due to the composability of differential privacy: every access to data reduces the privacy guarantee. Differentially private data generation solves this problem by creating a synthetic dataset that is reusable without limit. Unlike existing works assuming certain data distributions or particular downstream tasks, limiting the usefulness of the generated data, I propose a highly flexible nonparametric kernel-distance-based framework to compare the data and synthetic data distributions, in Part B. The third challenge arises due to the requirements for future algorithmic design imposed by regulations such as the General Data Protection Regulation. In Part C, I propose new frameworks that satisfy both differential privacy and other emerging notions, interpretability, causality, and fairness. Our theoretical and quantitative understanding of their interplay will be instrumental in developing practical algorithms that consider these notions simultaneously. There are two important societal impacts of the research program. First, the techniques like those in Part B ensure privacy protection which can promote more data sharing for the public good. Second, as the Netflix documentary Coded bias points out, automatic decision-making systems based on machine learning algorithms have a great potential to adversely affect people's lives. Augmenting those algorithms to be privacy-preserving, fair, and interpretable as suggested in Part C could potentially improve the quality of everyone's lives. The research program will support 13 trainees, who will learn about a broad range of recent advances in machine learning to be the next generation of machine learning experts. As a female primary investigator, my goal is to give more training opportunities to female students for gender equality in the field. Beyond that, I also intend to be inclusive to under-represented groups, e.g., geographically (such as Africa, South America, and Southeast Asia), or ethnically (indigenous people).
数据具有巨大的潜力,可以为全球饥饿和气候变化等紧迫问题提供改变世界的解决方案。然而,以解决大问题所需的规模共享数据会带来隐私问题。我的长期目标是提供方法基础,使我们能够正确使用和共享这些潜在的工具数据,而不会侵犯隐私。隐私保护机器学习的最新进展主要集中在差分隐私,因为它的可证明性。然而,保护隐私需要在机器学习系统中注入噪声,导致隐私和准确性之间的根本权衡。当算法的输出对其输入的任何变化都“敏感”时,这种权衡就变得困难了,因为噪声幅度必须增加以隐藏这种变化。在研究计划的A部分,我提出了新的方法,可以有效地限制灵敏度。第二个挑战是由于差异隐私的可组合性:每次访问数据都会降低隐私保证。差分私有数据生成通过创建可无限制地重用的合成数据集来解决这个问题。与现有的作品假设某些数据分布或特定的下游任务,限制了所生成的数据的有用性,我提出了一个高度灵活的非参数基于核距离的框架来比较数据和合成数据分布,在部分B。第三个挑战是由于《通用数据保护条例》等法规对未来算法设计的要求而产生的。在C部分,我提出了新的框架,既满足差异隐私和其他新兴的概念,可解释性,因果关系和公平。我们对它们之间相互作用的理论和定量理解将有助于开发同时考虑这些概念的实用算法。该研究项目有两个重要的社会影响。首先,像B部分中的那些技术确保了隐私保护,这可以促进更多的数据共享,以造福公众。其次,正如Netflix纪录片《Coded bias》所指出的,基于机器学习算法的自动决策系统有很大的潜力对人们的生活产生不利影响。如C部分所建议的那样,将这些算法增强为隐私保护、公平和可解释的,可能会提高每个人的生活质量。该研究计划将支持13名学员,他们将了解机器学习的广泛最新进展,成为下一代机器学习专家。作为一名女性初级调查员,我的目标是为女学生提供更多的培训机会,促进该领域的性别平等。除此之外,我还打算包容代表性不足的群体,例如,地理上(如非洲、南美洲和东南亚)或种族上(土著人民)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Park, MiJung其他文献
Park, MiJung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Park, MiJung', 18)}}的其他基金
Turning an enemy into an ally: Privacy In Machine Learning (Pri-ML)
化敌为友:机器学习中的隐私 (Pri-ML)
- 批准号:
DGECR-2022-00376 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Investigating symbiont impacts on natural enemy susceptibility in ladybird beetles.
研究共生体对瓢虫天敌敏感性的影响。
- 批准号:
2895176 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Hiding the enemy within: gaining new insights into HIV integration and the establishment and maintenance of latency.
将敌人隐藏在内部:获得对艾滋病毒整合以及潜伏期的建立和维持的新见解。
- 批准号:
493467 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Operating Grants
The role of the enemy in Nationalism: understanding the "other" in Xi Jinping's China
敌人在民族主义中的角色:理解习近平中国的“他者”
- 批准号:
2887797 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Understanding and managing the relationship between soldier burden, mobility and susceptibility to enemy fire in the Canadian Armed Forces
了解和管理加拿大武装部队中士兵负担、机动性和对敌人火力的敏感性之间的关系
- 批准号:
567175-2021 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
Natural enemy effects of mouse' nest-dwelling symbionts: Toward a new methods of controlling zoonotic disease vectors
小鼠巢穴共生体的天敌效应:控制人畜共患疾病媒介的新方法
- 批准号:
22K19882 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Manipulation of foraging behavior targeting on appetitive states in a predatory natural enemy, Nesidiocoris tenuis.
操纵针对掠食性天敌 Nesidiocoris tenuis 食欲状态的觅食行为。
- 批准号:
21KK0273 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
A study on peace policy after the Siege of Osaka-Analysis of amnesty orders against enemy soldiers-
大阪之围后的和平政策研究-对敌军特赦令的分析-
- 批准号:
22K13201 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Turning an enemy into an ally: Privacy In Machine Learning (Pri-ML)
化敌为友:机器学习中的隐私 (Pri-ML)
- 批准号:
DGECR-2022-00376 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Launch Supplement
The enemy within: evolution and diversification of parasitoid flies
内部的敌人:寄生蝇的进化和多样化
- 批准号:
RGPIN-2021-02656 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual