Development and Analysis of Metaheuristics for Challenging Large-Scale Optimization Problems

用于解决大规模优化问题的元启发法的开发和分析

基本信息

  • 批准号:
    RGPIN-2022-05418
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The benefits of optimization can be observed in almost all aspects of life, from science, healthcare, economics, to engineering problems. Important problems in these areas are computationally intractable by exact methods. My research uses computational intelligence, a branch of artificial intelligence to solve problems that are either too challenging or impossible to solve using conventional optimization methods. Specifically, I use algorithms that simulate the emergent behaviour of flocking birds (particle swarm optimization, PSO) and evolutionary algorithms (EAs) inspired by Darwinian evolution and population genetics: I use biological processes such as selection, crossover, and mutation to quickly find solutions that are acceptable in practice, or "near perfect" where the optimal solution may require a lifetime to compute. The majority of real-world optimization problems involve simultaneous optimization of two or more, often conflicting objectives, e.g., minimizing transportation costs while maximizing safety and efficiency; this is called a multi-objective optimization problem (MOP). The successes in the role played by optimizing algorithms based on EAs and PSOs, among other metaheuristics in solving MOPs are well documented. Increasingly we are faced with problems that have more than three objectives, i.e., a special case of MOPs, termed many-objective optimization problems (MaOPs). However, the performance of the aforementioned algorithms deteriorates severely with increase in the number of objectives (beyond three) and the number of problem dimensions or decision variables, i.e., for large-scale many-objective optimization problems, which present new challenges for optimization techniques. The proposed research will tackle efficient algorithm design, solution evaluation, and data/algorithm activity visualizations that have not been adequately addressed for MaOPs. Both well-known benchmark functions for MaOPs and large-scale real-world optimization problems arising in network science, such as finding critical nodes in complex networks, will be investigated. The critical node detection problem has many practical applications: e.g., targeting specific proteins in protein interaction networks for use in drug design, in computer network security so as to protect or attack important areas, in determining smart grid vulnerability, and in identifying individuals for vaccination or quarantine when mitigating disease spread. Providing efficient algorithmic solutions for important problems, and by improving our understanding of appropriate algorithms and techniques for different classes of challenging optimization problems, this research will benefit many researchers and practitioners that utilize optimization across different domains. I will involve graduate and senior undergraduate students to find cutting-edge solutions to challenging optimization problems and to advance the theoretical aspects and development of EAs and PSOs.
优化的好处可以在生活的几乎所有方面观察到,从科学,医疗保健,经济学到工程问题。在这些领域的重要问题是计算棘手的精确方法。我的研究使用计算智能,人工智能的一个分支来解决那些太具挑战性或无法使用传统优化方法解决的问题。具体来说,我使用的算法模拟集群鸟类的紧急行为(粒子群优化,PSO)和进化算法(EA)的灵感来自达尔文进化论和种群遗传学:我使用生物过程,如选择,交叉和突变,以快速找到解决方案,在实践中是可以接受的,或“接近完美”的最佳解决方案可能需要一生的计算。大多数现实世界的优化问题涉及两个或更多个经常冲突的目标的同时优化,例如,最小化运输成本,同时最大化安全和效率;这被称为多目标优化问题(MOP)。基于EA和PSO的优化算法在解决MOPs中所扮演的角色以及其他元算法的成功都有很好的记录。我们越来越多地面临具有三个以上目标的问题,即,MOPs的一种特殊情况,称为多目标优化问题(MaOP)。然而,上述算法的性能随着目标数量(超过三个)和问题维度或决策变量的数量的增加而严重恶化,即,对于大规模多目标优化问题,这对优化技术提出了新的挑战。拟议的研究将解决有效的算法设计,解决方案评估和数据/算法活动可视化尚未充分解决的MaOP。将研究MaOP的著名基准函数和网络科学中出现的大规模现实世界优化问题,例如在复杂网络中找到关键节点。关键节点检测问题具有许多实际应用:例如,针对蛋白质相互作用网络中的特定蛋白质,用于药物设计、计算机网络安全以保护或攻击重要区域、确定智能电网脆弱性以及在减轻疾病传播时识别接种疫苗或检疫的个人。为重要问题提供有效的算法解决方案,并通过提高我们对不同类别的具有挑战性的优化问题的适当算法和技术的理解,这项研究将使许多研究人员和实践者受益,利用不同领域的优化。我将让研究生和高年级本科生参与进来,为具有挑战性的优化问题找到最前沿的解决方案,并推进EA和PSO的理论方面和发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OmbukiBerman, Beatrice其他文献

OmbukiBerman, Beatrice的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OmbukiBerman, Beatrice', 18)}}的其他基金

Efficient evolutionary computation for the automatic generation of graph models for complex networks and optimization problems
用于自动生成复杂网络和优化问题的图模型的高效进化计算
  • 批准号:
    DDG-2016-00042
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Development Grant
Efficient evolutionary computation for the automatic generation of graph models for complex networks and optimization problems
用于自动生成复杂网络和优化问题的图模型的高效进化计算
  • 批准号:
    DDG-2016-00042
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Development Grant
Bio-inspired metaheuristics for combinatorial optimization in static and dynamic environments
用于静态和动态环境中组合优化的仿生元启发法
  • 批准号:
    249891-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
  • 批准号:
    ES/Y004906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了