Querying Heterogeneous Data for Non-Expert Users

为非专家用户查询异构数据

基本信息

  • 批准号:
    RGPIN-2021-03819
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Using the Internet to answer our questions is an almost daily practice, typically, using search engines like Google or Bing. Usually, this task involves browsing web pages to find the answer. In the past few years, if the question is simple (e.g., finding a fact about a famous entity), the answer is shown in what is called an infobox. Search engines show this fact by accurately extracting the entity of interest in the question written in natural language and map it to its equivalent entity in their internal data representation of the world. This internal representation is of course proprietary and different from one search engine to another. However, the approach is the same: The data is stored in a structured format (tables or what is typically called a knowledge graph) and queries are issued against it. Natural language is one of the most popular interfaces to access the underlying structured data. The simplicity of this approach allows non-expert users to access this plethora of datasets. However, retrieving accurate answers to natural language queries is a challenging task for even slightly more complicated questions. In this scenario, in order to retrieve accurate answers, the user needs to write a formal query in a structured query language. Of course, such a requirement is not practical and limits harnessing the power of knowledge available in the underlying structured data to power users who have sufficient technical skills to interact with the complex datasets. This research program aims at helping non-expert users to query datasets that come from heterogeneous sources and are stored in different formats. To achieve this goal, we will work on how to integrate data from multiple sources and formats for it to be ready for querying, how to build a querying system that supports natural language interfaces and other novel querying models to help a non-expert user to query the integrated data, and finally how to build benchmarks that can accurately assess the quality of the querying system.
使用互联网来回答我们的问题几乎是每天的做法,通常使用谷歌或必应等搜索引擎。通常,这项任务涉及浏览网页以找到答案。在过去的几年里,如果问题很简单(例如,找到一个关于著名实体的事实),答案显示在所谓的信息框中。搜索引擎通过准确地提取以自然语言编写的问题中的感兴趣实体并将其映射到其内部世界数据表示中的等效实体来显示这一事实。这种内部表示当然是专有的,并且从一个搜索引擎到另一个搜索引擎都是不同的。然而,方法是相同的:数据以结构化格式存储(表或通常称为知识图),并对其发出查询。自然语言是访问底层结构化数据的最流行接口之一。这种方法的简单性允许非专家用户访问这些过多的数据集。然而,检索自然语言查询的准确答案是一项具有挑战性的任务,即使是稍微复杂的问题。在这种情况下,为了检索准确的答案,用户需要用结构化查询语言编写正式查询。当然,这样的要求是不切实际的,并且限制了利用底层结构化数据中可用的知识的能力,以使具有足够技术技能的用户能够与复杂的数据集进行交互。 该研究计划旨在帮助非专家用户查询来自异构源并以不同格式存储的数据集。为了实现这一目标,我们将致力于如何整合来自多个来源和格式的数据,以便它准备查询,如何建立一个查询系统,支持自然语言接口和其他新颖的查询模型,以帮助非专家用户查询集成的数据,最后如何建立基准,可以准确地评估查询系统的质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ElRoby, Ahmed其他文献

ElRoby, Ahmed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ElRoby, Ahmed', 18)}}的其他基金

Querying Heterogeneous Data for Non-Expert Users
为非专家用户查询异构数据
  • 批准号:
    DGECR-2021-00212
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
Querying Heterogeneous Data for Non-Expert Users
为非专家用户查询异构数据
  • 批准号:
    RGPIN-2021-03819
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
  • 批准号:
    2348279
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CAREER: A Platform for Per-Packet AI using Heterogeneous Data Planes
职业:使用异构数据平面的每数据包人工智能平台
  • 批准号:
    2338034
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
  • 批准号:
    BB/Y513878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Structural Identification and Condition Assessment of Prestressed Concrete Bridges in Marine Environment Using Heterogeneous Test Data
利用异质试验数据进行海洋环境中预应力混凝土桥梁的结构识别和状态评估
  • 批准号:
    24K17344
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
  • 批准号:
    2311632
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Towards Harmonious Federated Intelligence in Heterogeneous Edge Computing via Data Migration
协作研究:SHF:中:通过数据迁移实现异构边缘计算中的和谐联邦智能
  • 批准号:
    2312617
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
FuSe-TG: FAB: A Heterogeneous Ferroelectronics Platform for Accelerating Big Data Analytics
FuSe-TG:FAB:加速大数据分析的异构铁电子平台
  • 批准号:
    2235366
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
  • 批准号:
    2320697
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CAREER: Harnessing Heterogeneous Sources of Data and Artificial Intelligence for Informed Flood Management
职业:利用异构数据源和人工智能进行明智的洪水管理
  • 批准号:
    2238639
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了