Self-supervised and Transfer Learning for Adaptive Motion Control

自适应运动控制的自监督和迁移学习

基本信息

  • 批准号:
    RGPIN-2020-04875
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Problem Motion-control in an unstructured environment is one of the hardest unsolved problems in robotics. Robots are skilled in routine and repetitive tasks, but no robot today can easily handle a novel household task without tedious modelling, designing, and programming by a human. Yet, nature solved this challenge half a billion years ago, and for so many human skills, we are not conscious of how a skill is learned or how a task is achieved. While animals handle complex environments with ease, motion-control is still lagging behind nature. Current state-of-the-art In robotics research, model-based control has shown promising results in manipulators and legged robots. Namely, if we have the perfect information of the kinematics (i.e., position, velocity, shape, dimensionality, etc) and dynamics (i.e., mass, center-of-mass, and inertia tensor, etc) of each rigid body in the system, we can find the control torques needed in order to achieve the desired motion. However, this technique is dependent on the accuracy of the kinematics and the dynamic model. While the data-driven approach has been applied to solve non-trivial tasks, this approach requires lots of human labour and suffers from sensory noises. Objectives The long term objective of my research is to develop robust robot control algorithms that are adaptive and versatile in different scenarios. Over the past decade, the newly developed supervised learning approach has been solving many problems that require finding the mapping between some inputs and outputs. In this proposal, we aim to enhance model-based motion control by the newly developed machine learning techniques. An example scenario that we will be targeting is robot grasping problem. Specifically, our short-term objectives are categorized into the following three themes: Theme 1: Estimation of Kinematics and Dynamics Humans are experts in adapting motion into different scenarios. In order for robots to perform well, the controller needs to have the knowledge of the kinematics and the dynamics model of the objects. For this, the first theme focuses on the estimation of kinematics and dynamics without prior knowledge. Theme 2: Self-supervised Learning Kinesthetic teaching, i.e., to manually move the robots and record the motion, requires a large amount of human labour. This theme focuses on the self-supervised learning approach; namely, let the robot samples different scenarios and creates a supervised learning dataset by itself. The effort will be on designing the criterion that increases the information we can gain from the dataset. Theme 3: Simulation-to-real Transfer Learning This theme takes a simulation-to-real transfer learning approach; namely, the models for kinematics and dynamics will be trained (offline) from data collected in simulation deployed on a real robotic platform. By doing so, we can alleviate the problems arisen from sensory noise and ensures the computation can be done in real-time.
非结构化环境中的运动控制是机器人领域最难解决的问题之一。机器人擅长日常和重复性的任务,但今天没有机器人可以轻松地处理一个新的家庭任务,而无需繁琐的建模,设计和编程的人。然而,大自然在5亿年前就解决了这一挑战,对于如此多的人类技能,我们没有意识到一项技能是如何学习的,或者一项任务是如何完成的。虽然动物可以轻松地处理复杂的环境,但运动控制仍然落后于自然。 在机器人研究中,基于模型的控制在机械手和腿式机器人中显示出了良好的效果。也就是说,如果我们有运动学的完美信息(即,位置、速度、形状、维度等)和动态(即,质量、质心和惯性张量等),我们可以找到为了实现期望运动所需的控制力矩。然而,这种技术依赖于运动学和动力学模型的准确性。虽然数据驱动的方法已被应用于解决非平凡的任务,但这种方法需要大量的人力,并受到感官噪音的影响。目标我的研究的长期目标是开发鲁棒的机器人控制算法,在不同的情况下是自适应和通用的。在过去的十年中,新开发的监督学习方法已经解决了许多需要找到一些输入和输出之间的映射的问题。在这个建议中,我们的目标是通过新开发的机器学习技术来增强基于模型的运动控制。我们将针对的一个示例场景是机器人抓取问题。具体来说,我们的短期目标分为以下三个主题:主题1:运动和动力学的估计人类是适应运动到不同场景的专家。为了使机器人表现良好,控制器需要具有对象的运动学和动力学模型的知识。为此,第一个主题集中在没有先验知识的运动学和动力学的估计。主题2:自我监督学习动觉教学,即,手动移动机器人并记录运动需要大量的人力。本主题重点介绍自监督学习方法;即让机器人对不同的场景进行采样,并自行创建监督学习数据集。我们将努力设计一个标准,以增加我们可以从数据集中获得的信息。 主题三:模拟到真实的迁移学习本主题采用模拟到真实的迁移学习方法;即,运动学和动力学模型将根据部署在真实的机器人平台上的模拟中收集的数据进行训练(离线)。通过这样做,我们可以减轻由感官噪声引起的问题,并确保计算可以实时完成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin, HsiuChin其他文献

Lin, HsiuChin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin, HsiuChin', 18)}}的其他基金

Self-supervised and Transfer Learning for Adaptive Motion Control
自适应运动控制的自监督和迁移学习
  • 批准号:
    RGPIN-2020-04875
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Self-supervised and Transfer Learning for Adaptive Motion Control
自适应运动控制的自监督和迁移学习
  • 批准号:
    RGPIN-2020-04875
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Self-supervised and Transfer Learning for Adaptive Motion Control
自适应运动控制的自监督和迁移学习
  • 批准号:
    DGECR-2020-00279
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

基于指点触控行为的身份认证与监控方法研究
  • 批准号:
    61175039
  • 批准年份:
    2011
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Self-Supervised Sequential Biomedical Image-Omics
自监督序贯生物医学图像组学
  • 批准号:
    DE240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Early Career Researcher Award
Investigating the Trustworthiness of Deep Pre-trained and Self-supervised Learned Model.
研究深度预训练和自监督学习模型的可信度。
  • 批准号:
    24K20806
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
  • 批准号:
    2334380
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
A data-saving and self-supervised deep learning system for continuous ischemic stroke assessment
用于连续缺血性中风评估的数据保存和自我监督深度学习系统
  • 批准号:
    24K15011
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the lived experience of injection drug use and access to harm reduction services in Northern and smaller urban settings: the case of Sudbury, Ontario
了解北部和较小城市环境中注射毒品使用和获得减少伤害服务的生活经历:安大略省萨德伯里的案例
  • 批准号:
    487998
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Operating Grants
Self-supervised feature learning for rapid processing of marine imagery
用于快速处理海洋图像的自监督特征学习
  • 批准号:
    LP220200949
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Linkage Projects
深層学習は関連タスクを学べるか:関連タスク学習能力の獲得とバイオ画像への応用
深度学习能否学习相关任务:相关任务学习能力的获取及其在生物图像中的应用
  • 批准号:
    22KJ2396
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
  • 批准号:
    10701364
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
  • 批准号:
    10665380
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
  • 批准号:
    10643456
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了