Big-Data Visual Code Completion Leveraging the Naturalness of Visual Source Code
利用视觉源代码的自然性进行大数据视觉代码补全
基本信息
- 批准号:RGPIN-2022-03464
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We seek to innovate code completion for visual code. Code completion tools suggest what code comes next. While textual code completion has received extensive attention, visual code completion has not. To enable visual code completion, we will leverage language and graph models trained on big-data collections of source code. This research is important as it targets end-user programmers who are more numerous than professional programmers, and under served by software engineering (SE). Code completion uses the current code and context to show programmers what they can do next, enabling exploration and experimentation. Recently, Github Co-Pilot revolutionized textual code completion with language models trained by mining the millions of software repositories on Github. Yet not all programs are text, visual programming languages often represent source code visually as graphs of nodes with input and output ports, that you connect together graphically with arrows, connectors, or edges. These languages are promoted by the No-Code movement, supported by companies like Shopify, as they enable end-user programmers to automate workflows and program software without textual code. There are many visual programming languages in use today across many domains, with many example programs available online: * Code in game levels (Unreal Engine Blueprints); * Audio/Music data-flow based languages (pure-data, Max/MSP); * Workflows for image processing (Blender, Photoshop); * Model Driven Engineering (Eclipse Modelling Framework); * Teaching programming (Scratch); and * Web app design / Workflow automation with No-code (Zapier, Shopify Mesa). Many companies in Canada such as Electronic Arts (EA), Bioware, Epic, and Shopify use and develop visual programming languages. EA's and Epic's games rely on visual code to describe effects and events within games, often making up more than 60% of the code-base, yet visual code receives far less tool support and software quality support than textual code. Classical SE models that measure software quality and support code completion are missing from visual code environments. End-user programmers who produce visual code are often unaware of their options: what the common parameters are, what comes next, and what quality code looks like. Visual code completion helps end-user programmers by suggesting visual code solutions drawn from past successful programs. Thus we propose to improve the state of visual programming languages by adapting and inventing methods for visual code completion, to suggest what nodes, edges, or parameters come next, and visual code improvement, to warn programmers about style, modularity, and error-prone code. Applying what we learned about visual programs and the naturalness of software, we will introduce SE ideas missing in visual code environments. Visual code completion will leverage the success of the past visual programs to enable end-user programmers to build successful programs in the future.
我们寻求创新的代码完成视觉代码。代码完成工具建议接下来的代码。虽然文本代码完成已经得到了广泛的关注,但可视化代码完成还没有。为了实现可视化代码完成,我们将利用在源代码的大数据集合上训练的语言和图形模型。这项研究是重要的,因为它的目标是最终用户程序员谁是比专业程序员更多,并根据软件工程(SE)服务。代码完成使用当前代码和上下文向程序员展示他们下一步可以做什么,从而实现探索和实验。最近,Github Co-Pilot通过挖掘Github上数百万个软件库来训练语言模型,从而彻底改变了文本代码完成。然而,并非所有的程序都是文本,可视化编程语言通常将源代码可视化地表示为具有输入和输出端口的节点的图形,您可以通过箭头,连接器或边缘图形化地连接在一起。这些语言由Shopify等公司支持的No-Code运动推广,因为它们使最终用户程序员能够在没有文本代码的情况下自动化工作流程和编程软件。如今,在许多领域都有许多可视化编程语言在使用,在线提供了许多示例程序:* 游戏关卡中的代码(虚幻引擎蓝图); * 音频/音乐数据流语言(pure-data,Max/MSP); * 图像处理的工作流(Blender,Photoshop); * 模型驱动工程(Eclipse建模框架); * 教学编程(Scratch);和 * Web应用程序设计/工作流自动化与无代码(Zapier,Shopify梅萨)。加拿大的许多公司,如Electronic Arts(EA),Bioware,Epic和Shopify使用和开发可视化编程语言。EA和Epic的游戏依赖于视觉代码来描述游戏中的效果和事件,通常占代码库的60%以上,但视觉代码获得的工具支持和软件质量支持远远少于文本代码。度量软件质量和支持代码完成的经典SE模型在可视化代码环境中缺失。生成可视化代码的最终用户程序员通常不知道他们的选择:公共参数是什么,接下来是什么,以及代码的质量如何。可视化代码完成通过从过去成功的程序中提出可视化代码解决方案来帮助最终用户程序员。因此,我们建议通过调整和发明可视化代码完成的方法来改善可视化编程语言的状态,建议接下来的节点,边缘或参数,以及可视化代码改进,警告程序员风格,模块化和容易出错的代码。应用我们所学到的关于可视化程序和软件自然性的知识,我们将介绍可视化代码环境中缺少的SE思想。可视化代码完成将利用过去可视化程序的成功,使最终用户程序员能够在未来构建成功的程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hindle, Abram其他文献
Isolated guiter transcription using a deep belif network
- DOI:
10.7717/peerj-cs.109 - 发表时间:
2017-03-27 - 期刊:
- 影响因子:3.8
- 作者:
Burlet, Gregory;Hindle, Abram - 通讯作者:
Hindle, Abram
Roundtable: What's Next in Software Analytics
- DOI:
10.1109/ms.2013.85 - 发表时间:
2013-07-01 - 期刊:
- 影响因子:3.3
- 作者:
Hassan, Ahmed E.;Hindle, Abram;Kim, Sunghun - 通讯作者:
Kim, Sunghun
On the Naturalness of Software
- DOI:
10.1145/2902362 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:22.7
- 作者:
Hindle, Abram;Barr, Earl T.;Devanbu, Premkumar - 通讯作者:
Devanbu, Premkumar
Hindle, Abram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hindle, Abram', 18)}}的其他基金
Big Data Approaches to Software Energy Consumption Modeling
软件能耗建模的大数据方法
- 批准号:
RGPIN-2017-05609 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Big Data Approaches to Software Energy Consumption Modeling
软件能耗建模的大数据方法
- 批准号:
RGPIN-2017-05609 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Big Data Approaches to Software Energy Consumption Modeling
软件能耗建模的大数据方法
- 批准号:
RGPIN-2017-05609 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Big Data Approaches to Software Energy Consumption Modeling
软件能耗建模的大数据方法
- 批准号:
RGPIN-2017-05609 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Service-based license verification of open source software
基于服务的开源软件许可验证
- 批准号:
512240-2017 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Engage Grants Program
Big Data Approaches to Software Energy Consumption Modeling
软件能耗建模的大数据方法
- 批准号:
RGPIN-2017-05609 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Green Mining: Keeping Software Sustainable by Engineering for Power Consumption
绿色采矿:通过功耗工程保持软件的可持续性
- 批准号:
418556-2012 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Green Mining: Keeping Software Sustainable by Engineering for Power Consumption
绿色采矿:通过功耗工程保持软件的可持续性
- 批准号:
418556-2012 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Green Mining: Keeping Software Sustainable by Engineering for Power Consumption
绿色采矿:通过功耗工程保持软件的可持续性
- 批准号:
418556-2012 - 财政年份:2014
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Green Mining: Keeping Software Sustainable by Engineering for Power Consumption
绿色采矿:通过功耗工程保持软件的可持续性
- 批准号:
418556-2012 - 财政年份:2013
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Projects
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
- 批准号:
RGPIN-2022-02948 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Enabling knowledge discovery in big visual data
实现大视觉数据中的知识发现
- 批准号:
556448-2020 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
University Undergraduate Student Research Awards
Improvement of decoding accuracy of visual stimulus using deep learning and ECoG big data
利用深度学习和ECoG大数据提高视觉刺激解码精度
- 批准号:
20K16466 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Big Data Processing and Analytics - Mining Noisy Visual Data and Learning Transferrable Predictive Models
大数据处理和分析 - 挖掘嘈杂的视觉数据和学习可迁移的预测模型
- 批准号:
RGPIN-2014-04402 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Big Data Processing and Analytics - Mining Noisy Visual Data and Learning Transferrable Predictive Models
大数据处理和分析 - 挖掘嘈杂的视觉数据和学习可迁移的预测模型
- 批准号:
RGPIN-2014-04402 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
III: Small: An end-to-end pipeline for interactive visual analysis of big data
III:小型:用于大数据交互式可视化分析的端到端管道
- 批准号:
1815238 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Derivation of Partial Differential Equations from Big Data using Visual Analytics
使用视觉分析从大数据中推导偏微分方程
- 批准号:
18H03252 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Domain-specific visual languages for big data analytics applications
适用于大数据分析应用程序的特定领域可视化语言
- 批准号:
DP170101932 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Projects
Algorithm and systems engineering for high-performance visual text analytics on big data
大数据高性能可视化文本分析的算法和系统工程
- 批准号:
499949-2016 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Collaborative Research and Development Grants