Stochastic Modelling
随机建模
基本信息
- 批准号:CRC-2021-00239
- 负责人:
- 金额:$ 5.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stochastic compartmental models and trait evolution models are powerful tools for studying the dynamics of infectious disease epidemics. However, the lack of rigorous theory and efficient computational methods has hindered the applicability of these models to real-world data. The proposed research program aims to cut directly to the heart of this pressing challenge. I have three specific objectives.The first objective is fostering stochastic compartmental models to study the dynamics of epidemics. The high computational cost has hindered the applicability of these models. Recently, I have developed fast algorithms for computing the transition probabilities of stochastic compartmental models. Building upon these algorithms, I will design an efficient direct inference framework for stochastic compartmental models. This framework will include many practical features, such as detecting changes in the dynamics of epidemics and the ability to incorporate new information. My new developments will provide better tools for studying the spread of epidemics, thus will contribute significantly to the battle against emerging infectious disease epidemics.The second objective is establishing theory for trait evolution models to explore the origin and spread of pathogens. Despite being used widely for studying the dynamics of infectious disease epidemics, the statistical properties of many trait evolution models remain unknown. Tacitly assuming the standard statistical theory for these models can lead to wasting resources on non-informative samples and incorrect interpretation of the analysis. The proposed research program will address this problem by building rigorous theory for trait evolution models.The final objective is developing a simulation-based method via machine learning to build efficient inference methods for epidemiological and evolutionary data. In practice, we may need to use models that are too complex to apply direct inference. The outcome of this direction is providing an efficient inference method for these models.
随机房室模型和性状进化模型是研究传染病流行动力学的有力工具。然而,缺乏严格的理论和有效的计算方法,阻碍了这些模型的适用性,以现实世界的数据。拟议的研究计划旨在直接切入这一紧迫挑战的核心。我有三个具体的目标,第一个目标是建立随机的房室模型来研究流行病的动力学。高计算成本阻碍了这些模型的适用性。最近,我开发了快速算法计算随机房室模型的转移概率。基于这些算法,我将设计一个有效的随机房室模型的直接推理框架。这一框架将包括许多实用的特点,如检测流行病动态的变化和纳入新信息的能力。我的新进展将为研究流行病的传播提供更好的工具,从而将对与新兴传染病流行病的斗争做出重大贡献。第二个目标是建立性状进化模型的理论,以探索病原体的起源和传播。尽管被广泛用于研究传染病流行的动力学,许多性状进化模型的统计特性仍然未知。默认这些模型的标准统计理论可能会导致在非信息样本上浪费资源和对分析的错误解释。该研究计划将通过建立严格的性状进化模型理论来解决这一问题,最终目标是通过机器学习开发一种基于模拟的方法,为流行病学和进化数据建立有效的推理方法。在实践中,我们可能需要使用过于复杂的模型来应用直接推理。这一方向的成果是为这些模型提供了一种有效的推理方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ho, Lam其他文献
Ho, Lam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ho, Lam', 18)}}的其他基金
Canada Research Chair in Stochastic Modelling
加拿大随机模型研究主席
- 批准号:
CRC-2016-00160 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
Advancing statistical inference for correlated and partially observed data
推进相关数据和部分观察数据的统计推断
- 批准号:
RGPIN-2018-05447 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Advancing statistical inference for correlated and partially observed data
推进相关数据和部分观察数据的统计推断
- 批准号:
RGPIN-2018-05447 - 财政年份:2021
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair In Stochastic Modelling
加拿大随机模型研究主席
- 批准号:
CRC-2016-00160 - 财政年份:2021
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
Advancing statistical inference for correlated and partially observed data
推进相关数据和部分观察数据的统计推断
- 批准号:
RGPIN-2018-05447 - 财政年份:2020
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Stochastic Modelling
加拿大随机模型研究主席
- 批准号:
CRC-2016-00160 - 财政年份:2020
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
Advancing statistical inference for correlated and partially observed data
推进相关数据和部分观察数据的统计推断
- 批准号:
RGPIN-2018-05447 - 财政年份:2019
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Stochastic Modelling
加拿大随机模型研究主席
- 批准号:
CRC-2016-00160 - 财政年份:2019
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
Advancing statistical inference for correlated and partially observed data
推进相关数据和部分观察数据的统计推断
- 批准号:
RGPIN-2018-05447 - 财政年份:2018
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Stochastic Modelling
加拿大随机模型研究主席
- 批准号:
CRC-2016-00160 - 财政年份:2018
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Addressing coastal erosion: Stochastic modelling of shoreline evolution under a changing climate
解决海岸侵蚀:气候变化下海岸线演变的随机模型
- 批准号:
2879840 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Studentship
Canada Research Chair in Stochastic Modelling
加拿大随机模型研究主席
- 批准号:
CRC-2016-00160 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
Building the bridge from atomistic to stochastic modelling of nanoscale friction phenomena
搭建纳米级摩擦现象从原子建模到随机建模的桥梁
- 批准号:
RGPIN-2015-04486 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Modelling of Big Data in Finance, Insurance and Energy Markets
金融、保险和能源市场大数据的随机建模
- 批准号:
RGPIN-2020-03948 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling for COVID
COVID 的随机建模
- 批准号:
572575-2022 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
University Undergraduate Student Research Awards
A stochastic finite element modelling framework to predict effect sizes on bone mechanics in preclinical studies
用于预测临床前研究中骨力学效应大小的随机有限元建模框架
- 批准号:
EP/V050346/1 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Research Grant
Stochastic dynamic programming for modelling and solving extended multivariate structural models
用于建模和求解扩展多元结构模型的随机动态规划
- 批准号:
RGPIN-2018-04432 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Stochastic, discrete modelling of in vitro and in vivo virus infections
体外和体内病毒感染的随机、离散模型
- 批准号:
RGPIN-2022-03774 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Towards Quantitative Integration of Reliability and Resiliency into Roadway Design: AI-Aided Road Vulnerability Assessment and Stochastic Uncertainty Modelling
将可靠性和弹性定量整合到道路设计中:人工智能辅助道路脆弱性评估和随机不确定性建模
- 批准号:
RGPIN-2022-03201 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




