3D Mobile Mapping Using Artificial Intelligence

使用人工智能的 3D 移动测绘

基本信息

  • 批准号:
    537080-2018
  • 负责人:
  • 金额:
    $ 16.72万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Critical infrastructure, the interdependent networks of utilities, transportation, and facilities, are the backbone of Canada's economy and society. Although Canada is the 2nd largest country in the world, with the world's 10th largest economy, one-third of its infrastructure is in need of a significant update. Regular, rigorous monitoring is necessary to ensure the safe and efficient operation of the infrastructure. However, current human-centric inspection practices are inadequate and laborious to fulfill this need. Inexpensive and more efficient technologies that are capable of continuous and accurate monitoring are necessary. 3D mobile mapping system (MMS) is an emerging solution that can collect visual sensory data to survey entire infrastructure with high speed using a common moving platform. There have been major advancements in acquiring sensory data to produce 3D point clouds; however, the post-acquisition processing of these datasets remains a challenge to successfully generate 3D high-fidelity maps, which are semantically interpretable, geometrically detailed and georeferenced with survey grade accuracy. Teledyne Optech, headquartered in Toronto, is a world leader in the MMS field. In collaboration with Teledyne Optech, this NSERC CRD project will develop an advanced data processing system using a specific type of artificial intelligence (AI), called deep neural network, which has recently achieved remarkable success in computer and robotic vision and machine learning. This work will allow for the autonomous recognition of infrastructure assets using the MMS data and high-quality 3D models of critical networks, thus contributing to the field of infrastructure management and improving urban sustainability as a whole. The technologies developed will be able to compete with human-centric technique and reduce the time required for post-acquisition data processing; they will facilitate the operation of the MMS in GPS-denied environments and allow users to adjust survey parameters as needed in real time. The HQP trained through this program will contribute to various Canadian industries and the fields of AI technologies, infrastructure management, urban planning, and MMS.
关键基础设施,公用事业,交通和设施的相互依赖的网络,是加拿大经济和社会的支柱。尽管加拿大是世界第二大国家,也是世界第十大经济体,但其三分之一的基础设施需要重大更新。必须进行定期、严格的监测,以确保基础设施的安全和有效运作。然而,当前以人为中心的检查实践不足以满足这一需求,而且很费力。需要能够进行连续和准确监测的廉价和更有效的技术。3D移动的测绘系统(MMS)是一种新兴的解决方案,可以收集视觉传感数据,以使用通用移动平台高速勘测整个基础设施。 在获取传感数据以生成3D点云方面取得了重大进展;然而,这些数据集的采集后处理仍然是成功生成3D高保真地图的挑战,这些地图在语义上可解释,几何上详细,并具有测量等级精度的地理参考。Teledyne Optech总部位于多伦多,是MMS领域的全球领导者。NSERC CRD项目将与Teledyne Optech合作,使用一种称为深度神经网络的特定类型的人工智能(AI)开发一种先进的数据处理系统,该系统最近在计算机和机器人视觉以及机器学习方面取得了显着的成功。这项工作将允许使用MMS数据和关键网络的高质量3D模型自动识别基础设施资产,从而为基础设施管理领域做出贡献,并提高整个城市的可持续性。所开发的技术将能够与以人为中心的技术竞争,并减少采集后数据处理所需的时间;这些技术将便利MMS在没有GPS的环境中的操作,并使用户能够根据需要真实的调整勘测参数。通过该计划培训的HQP将为加拿大各行业以及人工智能技术,基础设施管理,城市规划和MMS领域做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sohn, GunhoG其他文献

Sohn, GunhoG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Mobile-CRISPRi技术构建肺炎克雷伯菌knockdown文库及其抗菌药物靶点筛选的研究
  • 批准号:
    2020A151501586
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于Mobile Agent 的分布式数据流挖掘技术研究
  • 批准号:
    60873037
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
基于支持向量机的Mobile Agent系统中数据分类方法研究
  • 批准号:
    60673131
  • 批准年份:
    2006
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

Distributed Simultaneous Localization and Mapping for Collaborative Guidance, Navigation, and Control of Multiple Mobile Robots on Mars
火星上多个移动机器人协同制导、导航和控制的分布式同步定位和测绘
  • 批准号:
    555801-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Intelligent Small Unmanned Mobile Mapping Systems (i-SUMMS)
智能小型无人移动测绘系统(i-SUMMS)
  • 批准号:
    RGPIN-2020-06062
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
  • 批准号:
    2220387
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Automated mobile phone microscopy for the rapid mapping of schistosomiasis prevalence to guide preventive chemotherapy in endemic settings
自动手机显微镜可快速绘制血吸虫病患病率,指导流行地区的预防性化疗
  • 批准号:
    462193
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Operating Grants
Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
  • 批准号:
    2220388
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Inclusive participatory mapping combining real-world mobile collaborative learning and virtual mapping party
结合现实世界移动协作学习和虚拟测绘派对的包容性参与式测绘
  • 批准号:
    21H00915
  • 财政年份:
    2021
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Distributed Simultaneous Localization and Mapping for Collaborative Guidance, Navigation, and Control of Multiple Mobile Robots on Mars
火星上多个移动机器人协同制导、导航和控制的分布式同步定位和测绘
  • 批准号:
    555801-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
3D Mobile Mapping Using Artificial Intelligence
使用人工智能的 3D 移动测绘
  • 批准号:
    537080-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Collaborative Research and Development Grants
Intelligent Small Unmanned Mobile Mapping Systems (i-SUMMS)
智能小型无人移动测绘系统(i-SUMMS)
  • 批准号:
    RGPIN-2020-06062
  • 财政年份:
    2021
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Discovery Grants Program - Individual
Faster and Higher-Precision Mobile Mapping through AI
通过人工智能实现更快、更高精度的移动测绘
  • 批准号:
    971736
  • 财政年份:
    2020
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Small Business Research Initiative
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了