Understanding and Improving Deep Learning for Structured Data
理解和改进结构化数据的深度学习
基本信息
- 批准号:RGPIN-2022-04636
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning has achieved tremendous success in processing data with regular structures like images (grids), languages (sequences), and speech (sequences). However, data with irregular structure (e.g., point clouds in computer vision, multi-agent interaction graphs in robotics, parsing trees in natural language processing, molecules in computational chemistry, protein structure in biology, and social networks in computational social science) is ubiquitous and poses challenges to current deep learning methods. In this research program, we aim to understand the limitations of current deep learning models for structured data and improve them accordingly. In the first part, we will study the out-of-distribution (OOD) generalization ability of graph neural networks (GNNs) and Transformers in the context of reasoning tasks. For example, in algorithmic reasoning tasks where we know correct algorithms exist, we will investigate if GNNs/Transformers can learn graph algorithms that generalize to OOD graph data. These studies would shed light on designing novel models with better inductive bias. Once we obtain conclusions from such well-defined tasks, we will move to more challenging and realistic reasoning problems, e.g., learning neural networks based solvers for NP-hard problems, visual reasoning tasks such as visual question answering and scene graph prediction, and motion planning for self-driving. This part would help improve deep learning models on reasoning tasks and improve their OOD generalization on structured data. In the second part, we plan to design novel deep generative models for structured data. Given the superior performance of the recent deep generative models on images, it is appealing to generalize them to structured data like graphs. However, we need to overcome two main challenges: 1) building expressive and permutation-invariant probabilistic models for graphs; 2) designing customized sampling and learning algorithms for discrete random variables. Moreover, we plan to extend unconditional deep generative models to the conditional setting so that we can learn latent structures from data. Such models could describe the uncertainty and help improve the interpretability, which are crucial for real-world applications like point clouds generation in 3D compute vision and molecule generation for drug discovery.
深度学习在处理具有规则结构的数据方面取得了巨大的成功,如图像(网格),语言(序列)和语音(序列)。然而,具有不规则结构的数据(例如,计算机视觉中的点云、机器人中的多代理交互图、自然语言处理中的解析树、计算化学中的分子、生物学中的蛋白质结构以及计算社会科学中的社交网络)是普遍存在的,并且对当前的深度学习方法提出了挑战。在这项研究计划中,我们的目标是了解当前结构化数据深度学习模型的局限性,并相应地改进它们。 在第一部分中,我们将研究图神经网络(GNNs)和Transformer在推理任务中的分布外(OOD)泛化能力。例如,在我们知道存在正确算法的算法推理任务中,我们将研究GNN/Transformer是否可以学习推广到OOD图数据的图算法。这些研究将有助于设计具有更好感应偏置的新型模型。一旦我们从这些定义明确的任务中得出结论,我们将转向更具挑战性和现实性的推理问题,例如,基于学习神经网络的NP难题求解器,视觉推理任务,如视觉问答和场景图预测,以及自动驾驶的运动规划。这部分将有助于改进推理任务的深度学习模型,并改进其在结构化数据上的OOD泛化。在第二部分中,我们计划为结构化数据设计新的深度生成模型。鉴于最近的深度生成模型在图像上的上级性能,将它们推广到结构化数据(如图)是很有吸引力的。然而,我们需要克服两个主要挑战:1)为图构建表达性和置换不变的概率模型; 2)为离散随机变量设计定制的采样和学习算法。此外,我们计划将无条件深度生成模型扩展到条件设置,以便我们可以从数据中学习潜在结构。这些模型可以描述不确定性并有助于提高可解释性,这对于3D计算视觉中的点云生成和药物发现的分子生成等现实应用至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liao, Renjie其他文献
Highly multiplexed single-cell in situ RNA and DNA analysis with bioorthogonal cleavable fluorescent oligonucleotides
- DOI:
10.1039/c7sc05089e - 发表时间:
2018-03-21 - 期刊:
- 影响因子:8.4
- 作者:
Mondal, Manas;Liao, Renjie;Guo, Jia - 通讯作者:
Guo, Jia
Highly Multiplexed Single-Cell In Situ Protein Analysis with Cleavable Fluorescent Antibodies
- DOI:
10.1002/anie.201611641 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:16.6
- 作者:
Mondal, Manas;Liao, Renjie;Guo, Jia - 通讯作者:
Guo, Jia
Properties of Rhodotorula gracilis D-Amino acid oxidase immobilized on magnetic beads through his-tag
- DOI:
10.1263/jbb.105.110 - 发表时间:
2008-02-01 - 期刊:
- 影响因子:2.8
- 作者:
Kuan, Iching;Liao, Renjie;Yu, Chiyang - 通讯作者:
Yu, Chiyang
Liao, Renjie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liao, Renjie', 18)}}的其他基金
Understanding and Improving Deep Learning for Structured Data
理解和改进结构化数据的深度学习
- 批准号:
DGECR-2022-00409 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
- 批准号:
BB/X018563/1 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
- 批准号:
BB/X018660/1 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
CRII: CNS: A Systematic Multi-Task Learning Framework for Improving Deep Learning Efficiency on Edge Platforms
CRII:CNS:用于提高边缘平台深度学习效率的系统多任务学习框架
- 批准号:
2245765 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Improving the Generalizability of Deep Neural Networks by Teaching Single Nucleotide Polymorphisms Associated with LDCT Features
通过教授与 LDCT 特征相关的单核苷酸多态性来提高深度神经网络的通用性
- 批准号:
10905205 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Machine and deep learning for improving photoacoustic imaging for CAR T-cell cancer therapy
用于改善 CAR T 细胞癌症治疗光声成像的机器和深度学习
- 批准号:
2820513 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Improving FTIR Spectroscopy-based Prostate Cancer Classification through Deep Learning.
通过深度学习改进基于 FTIR 光谱的前列腺癌分类。
- 批准号:
2903768 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Improving Automated Synthetic Geometry Theorem Provers with Deep Learning on Auxiliary Element Construction
通过辅助元素构造的深度学习改进自动综合几何定理证明器
- 批准号:
567916-2022 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
Improving characterization and modelling of the rock-proppant interaction in hydraulic fractures for deep-earth geo-resource extraction
改进水力压裂中岩石-支撑剂相互作用的表征和建模,以进行深地地质资源开采
- 批准号:
RGPIN-2021-04215 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Informing Interventions: improving the measurement of children's vocabulary knowledge and caregiver input in the Deep South
告知干预措施:改进对南方腹地儿童词汇知识和护理人员投入的测量
- 批准号:
2141007 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Understanding and Improving Deep Learning for Structured Data
理解和改进结构化数据的深度学习
- 批准号:
DGECR-2022-00409 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement