Improving Magnetic Resonance Imaging Technologies for the Study of Brain Aging

改进磁共振成像技术以研究大脑衰老

基本信息

  • 批准号:
    RGPIN-2022-03552
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Our ability to measure and assess brain aging physiology relies upon imaging technologies, such as Magnetic Resonance Imaging (MRI). MRI improvements continue to show new utility for a broad set of applications, and improving how we gather and interpret data from imaging technologies is positioned to have a very large socio-economic impact for Canada and the rest of the world. Neuroimaging comes in several broad modalities that range in cost and imaging specificity, relative to other neuroimaging approaches, such as positron emission tomography (PET), MRI has the advantage of being more affordable and accessible, allowing imaging of the brain with hundreds of contrast modes and is less invasive on the research participant. The long-term goals of my research program are to contribute to gather large consortium databases used to study brain aging with novel sequences, and use these databases to distill new findings and associations with advanced data analytics and machine learning. In the short term, my objective is to develop a MRI sequence, validated in flow phantoms and human participants, to image the blood brain barrier permeability to water; and to develop specific machine learning models to enrich consortium databases; and models to analyze a range of imaging data collected from several large lifespan consortium databases. Recent developments in the field have shown the preliminary evidence of the ability to measure the flow of water across the blood brain barrier, using advanced MRI sequence methodology. However, these emerging methods need to be more robust and work in aging populations. The molecule responsible for the facilitating the passage of water through the blood brain barrier is called aquaporin, and evidence is mounting that reduced aquaporin could limit the clearing of neural waste products like amyloid, which is a molecule associated with accelerated brain aging. My program takes advantage of many large consortium databases. In my program I detail two big data and machine learning aims: 1) to build an image translation model that can predict position emission tomography images from less costly and less invasive structural MRI, and 2) to conduct advanced modelling of the brain aging process using multi-contrast MRI. This work expands existing cohort databases with new information and investigates methodology for distilling large data. The program will have ground-breaking technological advances and lead to technology to help address brain aging, which has an extremely negative socio-economic problem to Canada and the rest of the world, with a cost estimated to be well over a trillion dollars per year. Our technology advances for image translation work could yield information worth $150M. This program will train highly qualified personnel in advanced methods such as MR pulse sequencing, image processing, biophysical modelling, big data handling, high performance computing, and machine learning.
我们测量和评估大脑衰老生理学的能力依赖于成像技术,如磁共振成像(MRI)。MRI的改进继续显示出广泛应用的新用途,并改善我们收集和解释成像技术数据的方式,这将对加拿大和世界其他地区产生非常大的社会经济影响。神经成像有几种广泛的模式,其范围在成本和成像特异性方面,相对于其他神经成像方法,如正电子发射断层扫描(PET),MRI具有更经济实惠和更容易获得的优势,允许使用数百种对比模式对大脑进行成像,并且对研究参与者的侵入性较小。我的研究计划的长期目标是帮助收集用于研究大脑老化的大型联盟数据库,并使用这些数据库提取新的发现以及与先进数据分析和机器学习的关联。在短期内,我的目标是开发一种MRI序列,在流动模型和人类参与者中进行验证,以成像血脑屏障对水的渗透性;并开发特定的机器学习模型来丰富联盟数据库;以及分析从几个大型生命周期联盟数据库收集的一系列成像数据的模型。 该领域的最新发展已经显示了使用先进的MRI序列方法测量穿过血脑屏障的水流量的能力的初步证据。然而,这些新兴的方法需要更强大,并在老龄化人口中发挥作用。负责促进水通过血脑屏障的分子被称为水通道蛋白,越来越多的证据表明,减少水通道蛋白可能会限制淀粉样蛋白等神经废物的清除,淀粉样蛋白是一种与加速大脑衰老有关的分子。我的程序利用了许多大型联盟数据库。在我的项目中,我详细介绍了两个大数据和机器学习的目标:1)建立一个图像转换模型,可以从成本较低、侵入性较低的结构MRI中预测位置发射断层扫描图像; 2)使用多对比度MRI对大脑衰老过程进行高级建模。这项工作扩展了现有的队列数据库,提供了新的信息,并研究了提取大数据的方法。 该计划将具有突破性的技术进步,并导致技术,以帮助解决大脑老化,这对加拿大和世界其他地区有一个非常负面的社会经济问题,估计每年的成本超过一万亿美元。我们在图像翻译工作方面的技术进步可以产生价值1.5亿美元的信息。该计划将培养高素质的人才,先进的方法,如MR脉冲测序,图像处理,生物物理建模,大数据处理,高性能计算和机器学习。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MacDonald, Matthew其他文献

In utero iron status and auditory neural maturation in premature infants as evaluated by auditory brainstem response.
  • DOI:
    10.1016/j.jpeds.2009.09.049
  • 发表时间:
    2010-03
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Amin, Sanjiv B.;Orlando, Mark;Eddins, Ann;MacDonald, Matthew;Monczynski, Christy;Wang, Hongye
  • 通讯作者:
    Wang, Hongye
GPCR kinases generate an APH1A phosphorylation barcode to regulate amyloid-β generation.
  • DOI:
    10.1016/j.celrep.2022.111110
  • 发表时间:
    2022-07-19
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    K. Todd, Nicholas;Huang, Yunhong;Lee, Ji Young;Doruker, Pemra;Krieger, James M.;Salisbury, Ryan;MacDonald, Matthew;Bahar, Ivet;Thathiah, Amantha
  • 通讯作者:
    Thathiah, Amantha

MacDonald, Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MacDonald, Matthew', 18)}}的其他基金

Improving Magnetic Resonance Imaging Technologies for the Study of Brain Aging
改进磁共振成像技术以研究大脑衰老
  • 批准号:
    DGECR-2022-00124
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Develop automated test scripts to verify various web-based and backend components of the TUNet Contr
开发自动化测试脚本来验证 TUNet Contr 的各种基于 Web 的组件和后端组件
  • 批准号:
    516376-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Dynamic Balance Control for Biped Robots
双足机器人的动态平衡控制
  • 批准号:
    466127-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards
Stereoscopic Imaging Based Laser Guided Telethesis for Human-Computer Interfaces
基于立体成像的激光制导遥感人机界面
  • 批准号:
    464798-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Feedback controller design and implementation for biped robots
双足机器人反馈控制器的设计与实现
  • 批准号:
    450494-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards
Advanced engineering for improved device tracking in magnetic resonance imaging
用于改进磁共振成像设备跟踪的先进工程
  • 批准号:
    393095-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Advanced engineering for improved device tracking in magnetic resonance imaging
用于改进磁共振成像设备跟踪的先进工程
  • 批准号:
    393095-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Advanced engineering for improved device tracking in magnetic resonance imaging
用于改进磁共振成像设备跟踪的先进工程
  • 批准号:
    393095-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
High frequency extrapolation for improved MR perfusion
高频外推改善 MR 灌注
  • 批准号:
    377100-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Improved accuracy of cbf measurements
提高 CBF 测量的准确性
  • 批准号:
    367252-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards

相似海外基金

Improving Magnetic Resonance Imaging Technologies for the Study of Brain Aging
改进磁共振成像技术以研究大脑衰老
  • 批准号:
    DGECR-2022-00124
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Improving Aspects of In-Vivo Magnetic Resonance Spectroscopy Metabolite and Fat Quantification
体内磁共振波谱代谢物和脂肪定量的改进
  • 批准号:
    RGPIN-2018-04730
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving reproducibility of functional magnetic resonance imaging
提高功能磁共振成像的再现性
  • 批准号:
    RGPIN-2021-02393
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving reproducibility of functional magnetic resonance imaging
提高功能磁共振成像的再现性
  • 批准号:
    DGECR-2021-00004
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Improving Aspects of In-Vivo Magnetic Resonance Spectroscopy Metabolite and Fat Quantification
体内磁共振波谱代谢物和脂肪定量的改进
  • 批准号:
    RGPIN-2018-04730
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving reproducibility of functional magnetic resonance imaging
提高功能磁共振成像的再现性
  • 批准号:
    RGPIN-2021-02393
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Aspects of In-Vivo Magnetic Resonance Spectroscopy Metabolite and Fat Quantification
体内磁共振波谱代谢物和脂肪定量的改进
  • 批准号:
    RGPIN-2018-04730
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Aspects of In-Vivo Magnetic Resonance Spectroscopy Metabolite and Fat Quantification
体内磁共振波谱代谢物和脂肪定量的改进
  • 批准号:
    RGPIN-2018-04730
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Aspects of In-Vivo Magnetic Resonance Spectroscopy Metabolite and Fat Quantification
体内磁共振波谱代谢物和脂肪定量的改进
  • 批准号:
    RGPIN-2018-04730
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Understanding, Utility and Generality of Hyperpolarized, Long-lived Spin States in Magnetic Resonance
提高磁共振中超极化、长寿命自旋态的理解、实用性和通用性
  • 批准号:
    1665090
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了