Next-generation high performance MEMS ultrasonics

下一代高性能 MEMS 超声波

基本信息

  • 批准号:
    567531-2021
  • 负责人:
  • 金额:
    $ 6.95万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

It has long been hypothesized that capacitive micromachined ultrasound transducers (CMUTs) could potentially outperform piezoelectric technologies. However, challenges with dielectric charging, operational hysteresis, and transmit sensitivity have stood as obstacles to these performance outcomes. Typically, a CMUT element is designed with an ensemble of smaller membranes oscillating together to transmit or detect ultrasound waves. However, this approach can lead to unreliable behavior and suboptimal transmit performance if these smaller membranes oscillate out of phase, or collapse at different voltages. After nearly 15 years of work, we recently designed reliable CMUT elements composed of a single long rectangular membrane, that can outperform piezoelectrics. We explored various architectural modifications to the CMUT cavity in order to improve robustness to charging and minimize hysteresis without compromising performance. In order to fabricate CMUTs with these architectural modifications, we developed a double-SOI wafer bonded process with near-100% bonding yield, without the need for aligned bonding. The fabricated single-membrane CMUTs achieved electromechanical efficiency values as high as 0.95, higher than values reported with either piezoelectric transducers or CMUT elements. Moreover, these single-membrane CMUTs exhibited transmit efficiency 2-5 times greater than published CMUT or piezoelectric transducer elements in the 1.5-2.0 MHz range. Our devices demonstrated considerable charging robustness, demonstrating minimal charging over millions of collapse-snapback actuation cycles, while also mitigating hysteresis. In this proposal, we aim to further improve these devices for next-generation high-performance MEMS ultrasonics. Improvements will include high-K dielectrics enabling higher combined transmit and biasing voltages. We also propose an inverted CMUT architecture for piston-like motion, development of high-density through-silicon via technology, and development of prototype linear and 2D arrays. We aim to demonstrate the advantages of our technology using head-on comparisons against state-of-the art commercial probes.
长期以来,人们一直假设电容式微机械超声换能器(CMUTs)具有超越压电技术的潜力。然而,电介质充电、操作滞后和传输灵敏度方面的挑战一直是这些性能成果的障碍。通常,CMUT元件被设计成一个较小的膜的集合,一起振荡以传输或检测超声波。然而,如果这些较小的膜在不同的电压下振荡或崩溃,这种方法可能导致不可靠的行为和次优的传输性能。经过近15年的工作,我们最近设计了可靠的CMUT元件,该元件由单个长矩形膜组成,其性能优于压电元件。我们探索了对CMUT腔的各种架构修改,以提高充电的稳健性并在不影响性能的情况下最大限度地减少滞后。为了制造具有这些结构修改的cmut,我们开发了一种双soi晶圆键合工艺,键合率接近100%,无需对齐键合。制备的单膜CMUT实现了高达0.95的机电效率值,高于压电换能器或CMUT元件的报告值。此外,在1.5-2.0 MHz范围内,这些单膜CMUT的传输效率比已发表的CMUT或压电换能器元件高2-5倍。我们的设备显示出相当大的充电稳健性,在数百万次的崩溃-快照驱动周期中显示出最小的充电,同时也减轻了滞后。在本提案中,我们的目标是进一步改进这些器件,用于下一代高性能MEMS超声波。改进将包括高k介电体,使更高的组合传输和偏置电压。我们还提出了一种反向CMUT架构,用于活塞式运动,开发高密度硅通孔技术,以及开发原型线性和二维阵列。我们的目标是通过与最先进的商业探针进行正面比较来展示我们技术的优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zemp, RogerRJ其他文献

Zemp, RogerRJ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zemp, RogerRJ', 18)}}的其他基金

Deep learning for digital and virtual histology
数字和虚拟组织学的深度学习
  • 批准号:
    567581-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 6.95万
  • 项目类别:
    Alliance Grants

相似国自然基金

细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
  • 批准号:
    82371660
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
  • 批准号:
    30470495
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 6.95万
  • 项目类别:
    Continuing Grant
Supercharging Wind Propulsion: Advancing Digital tools in maritime to deliver real world performance in a next generation Wind Propulsion Design
增压风力推进:推进海事领域的数字工具,在下一代风力推进设计中提供真实的性能
  • 批准号:
    10093454
  • 财政年份:
    2024
  • 资助金额:
    $ 6.95万
  • 项目类别:
    Collaborative R&D
Nanoluciferase reporter phage for rapid phenotypic characterization of resistance to next-generation antimycobacterial agents
纳米荧光素酶报告噬菌体用于快速表征下一代抗分枝杆菌药物的耐药性
  • 批准号:
    10593796
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Next generation Floating Structures with High-Performance Composites
采用高性能复合材料的下一代浮动结构
  • 批准号:
    DE220100406
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
    Discovery Early Career Researcher Award
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
  • 批准号:
    10663642
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Next Generation Sequencing Shared Resource
下一代测序共享资源
  • 批准号:
    10625767
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
A Flexible High-Throughput Immunological Assay to Support Next-Generation Influenza Vaccine Studies
灵活的高通量免疫分析支持下一代流感疫苗研究
  • 批准号:
    10655239
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Advanced thin-slab TOF-PET detector module for next generation of brain PET
用于下一代大脑 PET 的先进薄板 TOF-PET 探测器模块
  • 批准号:
    10719570
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Biocarpet: The Next Generation Endovascular Device for Peripheral Arterial Disease
Biocarpet:治疗外周动脉疾病的下一代血管内装置
  • 批准号:
    10744597
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了