Artificial Intelligence Enabled Predictive Maintenance Digital Twins for Nuclear Power Plant Assets

人工智能支持核电厂资产的预测性维护数字孪生

基本信息

  • 批准号:
    571661-2021
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The nuclear industry is capital-intensive, heavily regulated, and expected by the public to achieve a perfect safety record. This requires greater safe operations of crucial assets with greater availability. As such the creation of a digital environment to support the design and operation of nuclear facilities is becoming the next logical step. This will provide benefits in terms of reducing the requirements for expensive physical mock-ups and test. In addition, it will provide increasing return on investment through more efficient operation and improving public perception.This purpose of this project is to develop an effective asset management framework. This will enable data-driven decision making at all levels of planning, maintenance, and operations. The integrated models will be leveraged to inform operators of current operational system health and performance metrics. The digital twin (DT) has been identified as a promising approach for deploying these models to operating assets. In this project high performance computing, sensors' data and mathematical modelling will be integrated in a digital model (digital twin). The digital twin will be a computational representation of the asset (nuclear steam generators, valve, pumps). The digital twin consists of a computer-aided engineering (CAE) model of the asset onto which is superimposed data acquired from structural health monitoring during operation and from maintenance periods. Digital twins powered by AI will be exploited to predict impending asset failure and the contributory factors. The system will be able to Digital prescribe operational and/or maintenance actions to preserve equipment health so that can plant downtime can be minimized.
核工业是资本密集型的,受到严格的监管,公众期望它能达到完美的安全记录。这就要求关键资产在更大的可用性下更安全地运行。 因此,创建一个数字环境来支持核设施的设计和运营正成为下一个合乎逻辑的步骤。 这将在减少对昂贵的物理模型和测试的要求方面提供好处。 此外,它将通过更有效的运作和改善公众的看法来增加投资回报,本项目的目的是建立一个有效的资产管理框架。这将在规划、维护和运营的各个层面实现数据驱动的决策。 集成模型将被用来通知操作员当前的操作系统健康和性能指标。数字孪生模型(DT)被认为是将这些模型部署到运营资产的一种有前途的方法。 在这个项目中,高性能计算、传感器数据和数学建模将被集成到一个数字模型(数字孪生模型)中。 数字孪生将是资产(核蒸汽发生器,阀门,泵)的计算表示。数字孪生模型由资产的计算机辅助工程(CAE)模型组成,其上叠加了从运行期间和维护期间的结构健康监测中获取的数据。由人工智能驱动的数字双胞胎将被用来预测即将发生的资产故障和促成因素。该系统将能够数字化规定操作和/或维护措施,以保持设备健康,从而最大限度地减少工厂停机时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hassan, MarwanM其他文献

Hassan, MarwanM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hassan, MarwanM', 18)}}的其他基金

Fretting Wear Damage of tubular bundles in the presence of flow-induced vibrations at elevated temperatures
微动磨损 高温下流引起振动时管束的损坏
  • 批准号:
    580454-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Alliance Grants

相似海外基金

CAREER: An Artificial Intelligence (AI)-enabled Analytics Perspective for Developing Proactive Cyber Threat Intelligence
职业:基于人工智能 (AI) 的分析视角,用于开发主动网络威胁情报
  • 批准号:
    2338479
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Development of novel artificial intelligence (AI)-enabled, non-invasive, heart attack diagnostics
SBIR 第一阶段:开发新型人工智能 (AI) 支持的非侵入性心脏病诊断
  • 批准号:
    2208248
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
SBIR Phase I: Artificial Intelligence (AI)-enabled Personalized Employability Curriculum (APEC)
SBIR 第一阶段:人工智能 (AI) 支持的个性化就业能力课程 (APEC)
  • 批准号:
    2230864
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
I-Corps: Artificial Intelligence and Haptic-Enabled Robotic Assistant for Surgeons
I-Corps:外科医生的人工智能和触觉机器人助手
  • 批准号:
    2330934
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
SBIR Phase I: Artificial Intelligence (AI)-Enabled African Language Database
SBIR 第一阶段:人工智能 (AI) 支持的非洲语言数据库
  • 批准号:
    2321575
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
  • 批准号:
    10816667
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
  • 批准号:
    2320292
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
I-Corps: Artificial Intelligence-Enabled Shoe Insoles to Assess Walking Function in Real Life Environments
I-Corps:人工智能鞋垫可评估现实生活环境中的步行功能
  • 批准号:
    2322980
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
NeuroXRFitness: A game-changing artificial intelligence (AI)-enabled and gamified extended reality (XR) technology for digital mental health using music therapy
NeuroXRFitness:一种改变游戏规则的人工智能 (AI) 和游戏化扩展现实 (XR) 技术,利用音乐疗法实现数字心理健康
  • 批准号:
    10051382
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了