Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
基本信息
- 批准号:RGPIN-2020-07108
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the proposed research program is to develop novel mechanical devices using concepts similar to those which have so successfully been used with artificial neural networks in the field of machine learning. By adapting to physical objects system architectures and design methodologies that were initially developed for machine learning in software, the proposed research will lead to entirely new classes of mechanical devices which can implement complex functions, be simple to design in an automated manner, and be highly efficient in terms of size and energy consumption. Over the last few years, we have contributed to the understanding that some of the most fundamental features of artificial neural networks, which enable their computing model and lead to their advantageous properties, can actually be realized in physical objects, and in particular in mechanical systems. As an example, we have shown that the non-linear dynamics of a small silicon beam clamped at both ends in a MEMS can be used as a resource for energy-efficient, dense neuromorphic computations. We have also presented the first demonstration of a 3D-printed metamaterial with a stiffness that is a complex function of patterns in the external force field acting on the metamaterial, and which can therefore be trained to respond in highly specific manners to external loads. The proposed work consists in the systematic investigation of the physical implementation of machine learning concepts directly within mechanical systems and structures. We have already demonstrated that this line of research could yield functional prototypes which represent a new way of building physical devices, to provide solutions for challenging applications. With this Discovery grant, various concepts from the field of machine learning will be applied to mechanical objects that are designed to have certain properties that are similar to those found in artificial neural networks. As a result, the mechanical devices will have the ability to respond in elaborated ways to external loads or stimuli (acceleration, sound). They will be trained to acquire these complex responses, instead of being designed to the smallest detail. And they are expected to inherit the remarkable generalization capability of neural networks, to respond adequately to stimuli never seen during training. The main anticipated outcome of the proposed research will be an analysis and design methodology supporting new classes of devices (MEMS, metamaterials, etc.). In the long term, these could be transferred to the industry to more efficiently solve problems in high technology fields such as patient health monitoring, robot control, automated manufacturing, smart sensors and the Internet of Things.
拟议研究计划的目标是开发新型机械装置,使用类似于机器学习领域中成功用于人工神经网络的概念。通过适应最初为软件中的机器学习而开发的物理对象系统架构和设计方法,拟议的研究将导致全新的机械设备类别,这些设备可以实现复杂的功能,以自动化的方式简单设计,并且在尺寸和能耗方面非常高效。在过去的几年里,我们对人工神经网络的一些最基本的特征的理解做出了贡献,这些特征使它们的计算模型得以实现,并导致它们的优势特性,实际上可以在物理对象中实现,特别是在机械系统中。作为一个例子,我们已经证明了夹在MEMS两端的小硅束的非线性动力学可以用作节能,密集神经形态计算的资源。我们还首次展示了一种3d打印的超材料,其刚度是作用在超材料上的外力场模式的复杂函数,因此可以训练它以高度特定的方式响应外部负载。提议的工作包括直接在机械系统和结构中系统地研究机器学习概念的物理实现。我们已经证明,这条研究路线可以产生功能原型,代表了一种构建物理设备的新方式,为具有挑战性的应用提供解决方案。有了这笔发现基金,机器学习领域的各种概念将被应用于机械物体,这些机械物体被设计成具有与人工神经网络相似的某些属性。因此,机械设备将能够以复杂的方式响应外部负载或刺激(加速度,声音)。他们将被训练来获得这些复杂的反应,而不是被设计到最小的细节。并且期望它们继承神经网络卓越的泛化能力,对训练中从未见过的刺激做出充分的反应。所提议的研究的主要预期结果将是支持新型器件(MEMS,超材料等)的分析和设计方法。从长远来看,这些可以转移到行业中,以更有效地解决诸如患者健康监测,机器人控制,自动化制造,智能传感器和物联网等高科技领域的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sylvestre, Julien其他文献
Reservoir computing with a single delay-coupled non-linear mechanical oscillator
- DOI:
10.1063/1.5038038 - 发表时间:
2018-10-21 - 期刊:
- 影响因子:3.2
- 作者:
Dion, Guillaume;Mejaouri, Salim;Sylvestre, Julien - 通讯作者:
Sylvestre, Julien
Microfabricated Neuroaccelerometer: Integrating Sensing and Reservoir Computing in MEMS
- DOI:
10.1109/jmems.2020.2978467 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:2.7
- 作者:
Barazani, Bruno;Dion, Guillaume;Sylvestre, Julien - 通讯作者:
Sylvestre, Julien
Inertial Sensor Location for Ground Reaction Force and Gait Event Detection Using Reservoir Computing in Gait.
- DOI:
10.3390/ijerph20043120 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:0
- 作者:
Havashinezhadian, Sara;Chiasson-Poirier, Laurent;Sylvestre, Julien;Turcot, Katia - 通讯作者:
Turcot, Katia
Sylvestre, Julien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sylvestre, Julien', 18)}}的其他基金
NSERC/IBM Canada Industrial Research Chair in High-Performance Heterogeneous Integration
NSERC/IBM 加拿大高性能异构集成工业研究主席
- 批准号:
463315-2018 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Industrial Research Chairs
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning in MEMS for Biomarkers Generation
MEMS 中的机器学习用于生成生物标志物
- 批准号:
568675-2021 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Alliance Grants
AI-MEMS Sensors for Preemptive Maintenance (Phase I)
用于预防性维护的 AI-MEMS 传感器(第一阶段)
- 批准号:
555555-2020 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Idea to Innovation
Integration technologies for immersion cooling in microelectronics
微电子领域浸入式冷却集成技术
- 批准号:
513262-2017 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
NSERC/IBM Canada Industrial Research Chair in High-Performance Heterogeneous Integration
NSERC/IBM 加拿大高性能异构集成工业研究主席
- 批准号:
463315-2018 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Industrial Research Chairs
Virtual qualification methodologies for microelectronic packaging
微电子封装虚拟鉴定方法
- 批准号:
491916-2015 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Computing with Liquid-State Nanomechanical Oscillator Networks
使用液态纳米机械振荡器网络进行计算
- 批准号:
RGPIN-2015-05215 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Integration technologies for immersion cooling in microelectronics
微电子领域浸入式冷却集成技术
- 批准号:
513262-2017 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
In-situ & operando organic electrochemical transistors monitored by non-destructive spectroscopies for organic CMOS-like neuromorphic circuits (ICONIC)
原位
- 批准号:
10104091 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
EU-Funded
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
- 批准号:
ST/Y50998X/1 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
- 批准号:
2344415 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
- 批准号:
2340249 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Solution-based Transition Metal Dichalcogenides for Flexible Neuromorphic Electronics
用于柔性神经形态电子器件的基于溶液的过渡金属二硫属化物
- 批准号:
EP/Y001567/1 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Research Grant
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
- 批准号:
EP/Y003276/1 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Research Grant
STTR Phase I: Development and Analysis of Functional NanoInks for Printed Neuromorphic Electronics and Smart Sensors
STTR 第一阶段:用于印刷神经形态电子和智能传感器的功能性纳米墨水的开发和分析
- 批准号:
2334413 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
A Reconfigurable Neuromorphic Compute System for Brain-Scale Simulations
用于大脑规模模拟的可重构神经形态计算系统
- 批准号:
LE230100034 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Autonomous Learning and Development in Embodied Neuromorphic Systems (ALDENS)
具身神经形态系统的自主学习和发展(ALDENS)
- 批准号:
EP/X018733/1 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Research Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328741 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant