Analytics to Combat Fraudulent Behaviour on Online Platforms

打击在线平台欺诈行为的分析

基本信息

  • 批准号:
    RGPIN-2022-04323
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Digital services such as Amazon, Uber, and Spotify have transformed how we consume goods and services. Behind the scenes, these platforms rely on data-driven policies to tackle various operational challenges, e.g., matching demand and supply, pricing, etc. However, the choices made by these algorithms can adversely impact the revenue of the service providers on the platform, who are then driven to manipulate the data in order to "game the system". For instance: 1) sellers on Amazon resort to fraudulent reviews and click bots to boost their own standing, 2) artists on Spotify hire fake users to stream their music as their revenue-share is proportional to their streaming volume. The rise of data manipulation threatens to undermine long-term trust in the digital economy as it can result in less-than-equitable outcomes for millions of consumers and service providers. Recognizing this, both academic researchers and the platforms themselves have devoted considerable resources to fraud detection, e.g., in 2019, Amazon spent $500 million to combat the abuse of its platform. Unfortunately, these efforts tend to be ad-hoc and "reactive rather than proactive". This proposal focuses on developing prescriptive, data-driven analytics for online platforms in the face of data manipulation. In a departure from existing approaches that center around fraud detection, this project prioritizes robustness by designing solutions that learn the optimal outcome even when the data is corrupted. In particular, we adopt a three-pronged approach that blends theoretical and empirical methodologies: 1. Introduce a new framework for modelling adversarial users on platforms and quantify the economic impact of such users. 2. Design machine learning algorithms that are robust to manipulation for problems relating to consumer choice and revenue management. 3. Present case studies pertaining to e-commerce, streaming, etc. to evaluate the approach and derive policy implications. Finally, the proposed methods will be evaluated against state-of-the-art algorithms for fraud detection to characterize whether a proactive approach outperforms reactive ones.   Impact: In Canada alone, the digital economy contributed $118 billion to the overall GDP in 2019. In this context, the completion of the proposed project would mark a significant step towards making the digital economy more reliable and preventing unfair outcomes. At the same time, our research will also provide policy makers with a timely understanding of the societal implications of online fraud, and guidelines on how to direct companies to address this problem. Finally, the interdisciplinary publications resulting from this project would advance the-state-of-the-art, provide opportunities for training HQP at different levels, and bring together numerous domains beyond Operations including Economics, Marketing and Computer Science.
亚马逊、Uber和Spotify等数字服务改变了我们消费商品和服务的方式。在幕后,这些平台依靠数据驱动的策略来应对各种运营挑战,例如,然而,这些算法所做的选择可能会对平台上的服务提供商的收入产生不利影响,这些服务提供商随后被驱使操纵数据以“玩弄系统”。例如:1)亚马逊上的卖家诉诸欺诈性评论和点击机器人来提升自己的地位,2)Spotify上的艺术家雇佣假用户来流媒体播放他们的音乐,因为他们的收入份额与他们的流媒体播放量成正比。数据操纵的兴起有可能破坏对数字经济的长期信任,因为它可能导致数百万消费者和服务提供商的不公平结果。认识到这一点,学术研究人员和平台本身都投入了大量资源用于欺诈检测,例如,2019年,亚马逊花费了5亿美元来打击滥用其平台的行为。不幸的是,这些努力往往是临时性的,“被动而非主动”。 该提案的重点是在面对数据操纵时为在线平台开发规范性的数据驱动分析。与现有的以欺诈检测为中心的方法不同,该项目通过设计即使在数据损坏时也能学习最佳结果的解决方案来优先考虑鲁棒性。特别是,我们采用了三管齐下的方法,融合了理论和实证方法:1。引入一个新的框架,对平台上的敌对用户进行建模,并量化这些用户的经济影响。2.设计机器学习算法,这些算法对于与消费者选择和收入管理相关的问题具有鲁棒性。3.目前的案例研究有关电子商务,流等,以评估的方法,并得出政策的影响。 最后,所提出的方法将进行评估,对国家的最先进的算法欺诈检测,以表征是否主动的方法优于反应。 影响:仅在加拿大,数字经济在2019年就为整体GDP贡献了1180亿美元。在这种情况下,拟议项目的完成将标志着朝着使数字经济更加可靠和防止不公平结果迈出的重要一步。与此同时,我们的研究还将为政策制定者提供及时了解在线欺诈的社会影响,以及指导公司如何解决这一问题的指导方针。最后,该项目产生的跨学科出版物将推进最先进的技术,为不同级别的HQP培训提供机会,并汇集了运营以外的众多领域,包括经济学,市场营销和计算机科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sekar, Shreyas其他文献

Sekar, Shreyas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sekar, Shreyas', 18)}}的其他基金

Analytics to Combat Fraudulent Behaviour on Online Platforms
打击在线平台欺诈行为的分析
  • 批准号:
    DGECR-2022-00502
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
  • 批准号:
    EP/Z533026/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
A novel anti-biofilm peptide from fish for the combat against antimicrobial resistance
一种来自鱼类的新型抗生物膜肽,用于对抗抗菌素耐药性
  • 批准号:
    MR/Y503393/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Development of an immunology toolbox to combat emerging marsupial diseases
开发免疫学工具箱来对抗新出现的有袋动物疾病
  • 批准号:
    DP240100714
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Projects
Doctoral Dissertation Research: Psychosocial Dimensions of the Transition to Civilian Life among Former Combat Veterans
博士论文研究:前退伍军人向平民生活过渡的心理社会维度
  • 批准号:
    2343316
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Global Centers Track 2: A multi-disciplinary framework to combat climate-induced desert locust upsurges, outbreaks, and plagues in East Africa
全球中心轨道 2:应对东非气候引起的沙漠蝗虫激增、爆发和瘟疫的多学科框架
  • 批准号:
    2330452
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Canadian antibiotic prescribing feedback initiative: Building a national framework to combat antimicrobial resistance in primary care (CANBuild-AMR)
加拿大抗生素处方反馈倡议:建立国家框架以应对初级保健中的抗菌药物耐药性 (CANBuild-AMR)
  • 批准号:
    487020
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Operating Grants
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
  • 批准号:
    10664448
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
HCC: Medium: Sociotechnical Systems to Combat Nonconsensual Intimate Media
HCC:媒介:对抗非共识亲密媒体的社会技术系统
  • 批准号:
    2311102
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Atomically precise, multi-ligand functionalised metal nanoclusters to combat bacterial antibiotic resistance
原子精确的多配体功能化金属纳米簇可对抗细菌抗生素耐药性
  • 批准号:
    2882405
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Trans embodiment and combat sports: Queer subversion, intimate violence and haptic encounters at the edge of legibility.
跨性别体现和格斗运动:酷儿颠覆、亲密暴力和清晰边缘的触觉遭遇。
  • 批准号:
    2883585
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了