Machine Learning-Powered Automated Software Bug Detection
机器学习驱动的自动化软件错误检测
基本信息
- 批准号:RGPIN-2020-06451
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today, software is integrated into every part of our society. Recent research shows that software faults could cost the global economy over 300 billion dollars annually. Building reliable and secure software has become an increasingly critical challenge for software developers. Thus the techniques for helping software developers detect software faults and improve software quality and reliability will be even more important than ever before. To help developers detect faults, over the last years, many static bug detection approaches have been proposed and some have been adopted in industry. A typical static bug detector leverages programming rules or patterns to detect specific types of bugs. Despite the overall success of static bug detection, it suffers from the following major challenging issues. First, current static bug detectors report a large number of false positives, i.e., reported bugs that are not actually bugs. Recent studies show that 30-90% of reported bugs by static bug detection tools are false positives. Second, current bug detectors miss detecting around 95% of real-world bugs, which suggests more bug patterns should be learned to detect bugs. Third, although a large number of bugs have been detected by current bug detection tools, developers still have to manually fix these bugs, which is time-consuming and requires nontrivial expertise. The goal of this proposal is to address the above-mentioned challenges when using static bug detection tools to help developers find bugs and improve software quality. This proposal has three research objectives (ROs). RO1: To help remove the false positives generated by static bug detectors, my students and I will leverage deep learning (DL) techniques to learn more powerful classification models that could distinguish the semantic difference between false positives and true bugs, and the model will be further integrated into existing static bug detection tools to help filter out false positives. RO2: To help find new bug patterns, my students and I will focus on history bugs that cannot be detected by existing bug detection tools and create machine learning based techniques to capture potential bug patterns. RO3: To help automatically fix bugs detected by existing static bug detectors, my students and I will propose DL based approaches to automatically repair bugs detected by static bug detectors by learning potential fixes from pattern information, historical fixes, and context information of the bugs. The outcome of this research will provide an actionable solution to assist developers with modern software bug detection tools. The proposed techniques will significantly improve software quality and reduce software debugging and development costs among Canadian companies, e.g., Shopify and RIM. The proposed research will also train five highly qualified personnel (HQP) and allow them to contribute to state-of-the-art software engineering research and practice.
今天,软件已经融入了我们社会的每一个部分。最近的研究表明,软件故障每年可能给全球经济造成超过3000亿美元的损失。构建可靠和安全的软件已经成为软件开发人员面临的日益严峻的挑战。因此,帮助软件开发人员检测软件故障、提高软件质量和可靠性的技术将比以往任何时候都更加重要。为了帮助开发人员检测故障,在过去的几年里,提出了许多静态错误检测方法,其中一些已经在行业中采用。典型的静态错误检测器利用编程规则或模式来检测特定类型的错误。尽管静态错误检测总体上取得了成功,但它仍面临以下主要的挑战性问题。首先,当前的静态错误检测器报告了大量的误报,即报告的错误不是实际的错误。最近的研究表明,静态错误检测工具报告的错误中有30%-90%是假阳性。其次,当前的错误检测器无法检测到约95%的真实错误,这表明应该学习更多的错误模式来检测错误。第三,虽然目前的漏洞检测工具已经检测到了大量的漏洞,但开发人员仍然需要手动修复这些漏洞,这既耗时又需要非同小可的专业知识。本提案的目标是解决在使用静态漏洞检测工具帮助开发人员发现漏洞和提高软件质量时的上述挑战。这项建议有三个研究目标(ROS)。RO1:为了帮助消除静态错误检测器生成的误报,我和我的学生将利用深度学习(DL)技术来学习更强大的分类模型,该模型可以区分假阳性和真错误之间的语义差异,该模型将进一步集成到现有的静态错误检测工具中,以帮助筛选出假阳性。RO2:为了帮助发现新的错误模式,我和我的学生将专注于现有错误检测工具无法检测到的历史错误,并创建基于机器学习的技术来捕获潜在的错误模式。为了帮助自动修复由现有静态错误检测器检测到的错误,我的学生和我将提出基于动态链接库的方法,通过从错误的模式信息、历史修复和上下文信息中学习潜在的修复来自动修复静态错误检测器检测到的错误。这项研究的结果将提供一个可行的解决方案,以帮助开发人员使用现代软件漏洞检测工具。拟议的技术将显著提高软件质量,并降低Shopify和RIM等加拿大公司的软件调试和开发成本。拟议的研究还将培训五名高素质人员(HQP),并允许他们为最先进的软件工程研究和实践做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Song其他文献
A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing
一种基于环形液固界面摩擦纳米发电机的稳健自供电倾斜传感器,用于船舶姿态传感
- DOI:
10.1016/j.sna.2020.112459 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:4.6
- 作者:
Wang, Song;Wang, Yan;Xu, Minyi - 通讯作者:
Xu, Minyi
Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis.
- DOI:
10.3389/fpls.2022.1017869 - 发表时间:
2022 - 期刊:
- 影响因子:5.6
- 作者:
Gui, Qihui;Yang, Zhengyu;Chen, Chao;Yang, Feng;Wang, Song;Dong, Rui - 通讯作者:
Dong, Rui
Dynamic Saliency-Aware Regularization for Correlation Filter-Based Object Tracking
基于相关滤波器的对象跟踪的动态显着性感知正则化
- DOI:
10.1109/tip.2019.2895411 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:10.6
- 作者:
Feng, Wei;Han, Ruize;Wang, Song - 通讯作者:
Wang, Song
Approaching the mapping limit with closed-loop mapping strategy for deploying neural networks on neuromorphic hardware.
- DOI:
10.3389/fnins.2023.1168864 - 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
Wang, Song;Yu, Qiushuang;Xie, Tiantian;Ma, Cheng;Pei, Jing - 通讯作者:
Pei, Jing
Pre-COVID brain functional connectome features prospectively predict emergence of distress symptoms after onset of the COVID-19 pandemic.
- DOI:
10.1017/s0033291722002173 - 发表时间:
2023-08 - 期刊:
- 影响因子:6.9
- 作者:
Pan, Nanfang;Qin, Kun;Yu, Yifan;Long, Yajing;Zhang, Xun;He, Min;Suo, Xueling;Zhang, Shufang;Sweeney, John A.;Wang, Song;Gong, Qiyong - 通讯作者:
Gong, Qiyong
Wang, Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Song', 18)}}的其他基金
Machine Learning-Powered Automated Software Bug Detection
机器学习驱动的自动化软件错误检测
- 批准号:
RGPIN-2020-06451 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning-Powered Automated Software Bug Detection
机器学习驱动的自动化软件错误检测
- 批准号:
DGECR-2020-00300 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
Machine Learning-Powered Automated Software Bug Detection
机器学习驱动的自动化软件错误检测
- 批准号:
RGPIN-2020-06451 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Evolving Telecoms scope 3 decarbonisation: an open-access emissions datasource powered by Vision Machine Learning
不断发展的电信范围 3 脱碳:由视觉机器学习提供支持的开放获取排放数据源
- 批准号:
10111834 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative R&D
Creating an All-optical, Mechanobiology-guided, and Machine-learning-powered High-throughput Framework to Elucidate Neural Dynamics
创建全光学、机械生物学引导和机器学习驱动的高通量框架来阐明神经动力学
- 批准号:
2308574 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
DataSim: A Machine Learning-powered simulation tool for rail timetable optimisation
DataSim:用于铁路时刻表优化的机器学习驱动的模拟工具
- 批准号:
10090014 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative R&D
Crowd-Powered Machine Learning to Diagnose ASD and ADHD in Adolescents from Digital Social Interactions
众包机器学习通过数字社交互动诊断青少年 ASD 和 ADHD
- 批准号:
10682965 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
EAGER: Quantum Manufacturing: Machine learning-powered deterministic nanoassembly of ultrafast quantum photonic devices
EAGER:量子制造:机器学习驱动的超快量子光子器件的确定性纳米组装
- 批准号:
2240621 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Machine learning powered tooling for analysing climate alignment in the financial industry
用于分析金融行业气候一致性的机器学习驱动工具
- 批准号:
10031857 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Small Business Research Initiative
Personalised AI/Machine Learning powered Wellbeing Coach
个性化人工智能/机器学习驱动的健康教练
- 批准号:
10046986 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant for R&D
SBIR Phase I: Machine learning-powered simulation of additive manufacturing for real-time design and process optimization
SBIR 第一阶段:基于机器学习的增材制造仿真,用于实时设计和流程优化
- 批准号:
2151667 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
iFuelActive-PRO: A smart aftermarket in-tank fuel solution to supply the cleanest fuel possible to diesel engines with onboard fuel quality monitoring capabilities and machine-learning powered predictive maintenance.
iFuelActive-PRO:一种智能售后罐内燃油解决方案,可为柴油发动机提供最清洁的燃油,具有机载燃油质量监控功能和机器学习驱动的预测性维护。
- 批准号:
10035317 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative R&D
FairFL-MC: A Metacognitive Calibration Intervention Powered by Fair and Private Machine Learning
FairFL-MC:由公平和私人机器学习支持的元认知校准干预
- 批准号:
2202481 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant