Data-driven stochastic dynamic programming approaches for optimal planning of disease screening and chronic disorder management

数据驱动的随机动态规划方法,用于疾病筛查和慢性疾病管理的优化规划

基本信息

  • 批准号:
    RGPIN-2018-06596
  • 负责人:
  • 金额:
    $ 4.52万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Given the transformation towards evidence-based and personalized decision making, powerful data-driven modeling approaches are needed to obtain personalized optimal intervention plans for practical engineering problems. We propose developing novel engineering tools based on stochastic dynamic programming and data analytics to address practical sequential decision making problems. Although proposed research will be applied to cancer screening and chronic-disease management, the focus is on developing engineering methodology.First, we propose a novel bicriteria partially observable Markov decision process (POMDP) to derive the optimal Pareto-efficient policies for particular screening problems. There is limited research on multicriteria POMDPs; the existing approaches are approximations based on methods including state discretization and machine learning. To solve our POMDP exactly, we propose a novel reformulation of the model as a constrained Markov decision process (MDP) by replacing the state space with a limited collection of historical screening observations. Under reasonable conditions, this reformulation provides a tractable model for which we aim to develop efficient solution procedures by reducing the state/action space via structural properties. Using clinical data from literature and Mayo Clinic, Rochester-MN, we will apply this formulation to determine the Pareto-efficient policies for colorectal cancer screening and surveillance. The proposed model may help develop insights to improve and personalize cancer screening practices, a significant contribution as cancer is the leading cause of death in Canada. The proposed approach will also improve the engineering knowledge on POMDPs for other engineering applications.Second, we propose a novel data-driven approach for modeling the progression of irreversibly deteriorating systems (e.g., chronic diseases) and their management. Many systems are monitored by complex scoring systems based on test/inspection results or scores from technical assessments. The proposed data analytics approach will process data from longitudinal records of inspections to identify critical events (tollgates) and estimate future progression of deterioration through these tollgates, by using methods including supervised machine learning, classification, and prediction models. The findings from these proposed prescriptive/predictive analytics tools will then be used to derive an MDP model to optimize the timing of palliative/assistive interventions to decrease the disutility due to deterioration. The proposed methodology will be applied to predict amyotrophic lateral sclerosis (ALS) progression, optimize the timing of ordering assistive devices, and maximize wellbeing of ALS patients using data from Mayo Clinic, Rochester.The proposed research will be extended to consider more general settings.
鉴于向循证和个性化决策的转变,需要强大的数据驱动建模方法来获得针对实际工程问题的个性化最佳干预方案。我们建议开发基于随机动态规划和数据分析的新型工程工具来解决实际的顺序决策问题。虽然拟议的研究将应用于癌症筛查和慢性疾病管理,但重点是开发工程方法。首先,我们提出了一种新的双准则部分可观察马尔可夫决策过程(POMDP)来推导特定筛选问题的最优帕累托有效策略。对多标准pomdp的研究有限;现有的方法是基于状态离散化和机器学习等方法的近似。为了准确地解决我们的POMDP,我们提出了一种新的模型重新表述为约束马尔可夫决策过程(MDP),通过用有限的历史筛选观察值集合取代状态空间。在合理的条件下,这种重新表述提供了一个易于处理的模型,我们的目标是通过结构属性减少状态/动作空间来开发有效的解决程序。利用文献和梅奥诊所的临床数据,我们将应用这一公式来确定结肠直肠癌筛查和监测的帕累托有效政策。所提出的模型可能有助于开发改进和个性化癌症筛查实践的见解,这是一项重大贡献,因为癌症是加拿大的主要死亡原因。所提出的方法也将为其他工程应用提高对pomdp的工程知识。其次,我们提出了一种新的数据驱动方法来模拟不可逆恶化系统(如慢性病)及其管理的进展。许多系统由基于测试/检查结果或技术评估分数的复杂评分系统监控。拟议的数据分析方法将处理来自检查纵向记录的数据,以识别关键事件(收费站),并通过使用包括监督机器学习、分类和预测模型在内的方法,估计这些收费站未来的恶化进程。这些建议的规定性/预测性分析工具的研究结果将用于推导MDP模型,以优化姑息/辅助干预的时间,以减少因病情恶化而产生的负效用。所提出的方法将应用于预测肌萎缩侧索硬化症(ALS)的进展,优化订购辅助设备的时间,并利用罗切斯特梅奥诊所的数据最大限度地提高ALS患者的健康水平。拟议的研究将扩大到考虑更一般的情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erenay, Fatih其他文献

Erenay, Fatih的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erenay, Fatih', 18)}}的其他基金

Data-driven stochastic dynamic programming approaches for optimal planning of disease screening and chronic disorder management
数据驱动的随机动态规划方法,用于疾病筛查和慢性疾病管理的优化规划
  • 批准号:
    RGPIN-2018-06596
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven stochastic dynamic programming approaches for optimal planning of disease screening and chronic disorder management
数据驱动的随机动态规划方法,用于疾病筛查和慢性疾病管理的优化规划
  • 批准号:
    RGPIN-2018-06596
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven stochastic dynamic programming approaches for optimal planning of disease screening and chronic disorder management
数据驱动的随机动态规划方法,用于疾病筛查和慢性疾病管理的优化规划
  • 批准号:
    RGPIN-2018-06596
  • 财政年份:
    2019
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven stochastic dynamic programming approaches for optimal planning of disease screening and chronic disorder management
数据驱动的随机动态规划方法,用于疾病筛查和慢性疾病管理的优化规划
  • 批准号:
    RGPIN-2018-06596
  • 财政年份:
    2018
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Novel mathematical models for optimal screening and multicriteria scheduling problems
用于优化筛选和多标准调度问题的新颖数学模型
  • 批准号:
    418663-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Novel mathematical models for optimal screening and multicriteria scheduling problems
用于优化筛选和多标准调度问题的新颖数学模型
  • 批准号:
    418663-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Novel mathematical models for optimal screening and multicriteria scheduling problems
用于优化筛选和多标准调度问题的新颖数学模型
  • 批准号:
    418663-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Novel mathematical models for optimal screening and multicriteria scheduling problems
用于优化筛选和多标准调度问题的新颖数学模型
  • 批准号:
    418663-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Novel mathematical models for optimal screening and multicriteria scheduling problems
用于优化筛选和多标准调度问题的新颖数学模型
  • 批准号:
    418663-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Novel mathematical models for optimal screening and multicriteria scheduling problems
用于优化筛选和多标准调度问题的新颖数学模型
  • 批准号:
    418663-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
  • 批准号:
    23K03913
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Inventory control, revenue management and pricing: Data-driven stochastic optimization approaches
库存控制、收入管理和定价:数据驱动的随机优化方法
  • 批准号:
    RGPIN-2020-04213
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven stochastic dynamic programming approaches for optimal planning of disease screening and chronic disorder management
数据驱动的随机动态规划方法,用于疾病筛查和慢性疾病管理的优化规划
  • 批准号:
    RGPIN-2018-06596
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Inventory control, revenue management and pricing: Data-driven stochastic optimization approaches
库存控制、收入管理和定价:数据驱动的随机优化方法
  • 批准号:
    RGPIN-2020-04213
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
  • 批准号:
    530985-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven stochastic dynamic programming approaches for optimal planning of disease screening and chronic disorder management
数据驱动的随机动态规划方法,用于疾病筛查和慢性疾病管理的优化规划
  • 批准号:
    RGPIN-2018-06596
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Inventory control, revenue management and pricing: Data-driven stochastic optimization approaches
库存控制、收入管理和定价:数据驱动的随机优化方法
  • 批准号:
    RGPIN-2020-04213
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Data-Driven Learning Optimization of Dynamical System with Stochastic Uncertainty and Its Application
随机不确定性动态系统的数据驱动学习优化及其应用
  • 批准号:
    19K15019
  • 财政年份:
    2019
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了