Counting curves with symmetry
计算对称曲线
基本信息
- 批准号:RGPIN-2022-03691
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enumerative algebraic geometry, a.k.a. "curve counting", has been a major part of algebraic geometry for the last 30 years. It refers to subtle invariants of spaces obtained by counting the number of ways that curves (or sometimes more general objects) can sit inside a space. The subject has its origin in ideas coming from theoretical physics (string theory) where the curves can be thought of as the world-sheets of strings. There is an infinite number of curve counting invariants for any given space, and collection of numbers is encoded into a single function called the partition function of the space. Computing the partition function of a space (especially for a certain kind of six dimensional space called a compact Calabi-Yau threefold), is a major goal of both algebraic geometry and physics. The goal of this project is to enrich our understanding of curve counting invariants for spaces which have extra symmetries (including certain "hidden" symmetries called "derived" symmetries). Broadly speaking one can count curves which are invariant under the symmetry. This will lead to new curve counting invariants, which will in turn give us greater understanding of the original invariants. Preliminary investigations suggest that for certain spaces, the partition functions associated to these new curve counting theories will be given by modular forms --- extraordinary functions that arise in number theory and have been studied for well over a hundred years. This provides a powerful link between three very different subjects: geometry, physics, and number theory. One of the holy grails in this subject is to obtain a complete and explicit formula for the partition function of any compact Calabi-Yau threefold. One aim of this project is to do exactly that: find an explicit formula for the partition function, in terms of modular forms, of a very special Calabi-Yau threefold, namely the Schoen manifold. The idea is that this space has an enormous number of symmetries, including many of the "hidden" symmetries alluded to above. This, along with new geometric ideas introduced, should allow us to give a complete computation of this partition function and express it in terms of modular forms. No one has every been able to compute the partition function of a compact Calabi-Yau threefold (the geometry most relevant in string theory). Having such a function would give us great insight into the corresponding physical theory and thus would have a significant impact in both geometry and physics.
枚举代数几何,又名。“曲线计数”,在过去的30年里一直是代数几何的重要组成部分。它指的是通过计算曲线(有时是更一般的物体)坐在空间内的方式的数量而获得的空间的微妙不变量。这个主题起源于理论物理(弦理论)的思想,在理论物理中,曲线可以被认为是弦的世界薄片。对于任何给定的空间,存在无限数量的曲线计数不变量,并且数字集合被编码成称为该空间的配分函数的单个函数。计算空间的配分函数(特别是对于一类称为紧Calabi-Yau三重空间的六维空间),是代数几何和物理学的主要目标。这个项目的目标是丰富我们对具有额外对称性(包括某些被称为“派生”对称的“隐藏”对称)的空间的曲线计数不变量的理解。一般说来,人们可以计算在对称性下不变的曲线。这将导致新的曲线计数不变量,这反过来将使我们对原始不变量有更好的理解。初步研究表明,对于某些空间,与这些新的曲线计数理论相关的配分函数将以模形式给出-在数论中出现并已被研究了一百多年的非常函数。这在几何、物理和数论这三门完全不同的学科之间提供了强大的联系。本课题的主要目的之一是得到任意紧的Calabi-Yau三元系的配分函数的一个完整而明确的公式。这个项目的一个目标正是要做到这一点:找到一个非常特殊的Calabi-Yau三重流形,即Schoen流形的配分函数的明确的模形式公式。这个想法是,这个空间有大量的对称性,包括上面提到的许多“隐藏的”对称性。这一点,加上引入的新几何概念,应该允许我们给出这个配分函数的完整计算,并以模形式表示它。从来没有人能够计算紧凑的Calabi-Yau三重(弦理论中最相关的几何)的配分函数。拥有这样的函数将使我们深入了解相应的物理理论,从而在几何学和物理学中都将产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan, Jim其他文献
Locally Maximally Entangled States of Multipart Quantum Systems
- DOI:
10.22331/q-2019-01-06-115 - 发表时间:
2019-01-06 - 期刊:
- 影响因子:6.4
- 作者:
Bryan, Jim;Leutheusser, Samuel;Van Raamsdonk, Mark - 通讯作者:
Van Raamsdonk, Mark
Surface bundles over surfaces of small genus
- DOI:
10.2140/gt.2002.6.59 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:2
- 作者:
Bryan, Jim;Donagi, Ron - 通讯作者:
Donagi, Ron
Motivic degree zero Donaldson-Thomas invariants
- DOI:
10.1007/s00222-012-0408-1 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:3.1
- 作者:
Behrend, Kai;Bryan, Jim;Szendroi, Balazs - 通讯作者:
Szendroi, Balazs
Bryan, Jim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan, Jim', 18)}}的其他基金
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
- 批准号:
RGPIN-2017-03789 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
- 批准号:
RGPIN-2017-03789 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
- 批准号:
RGPIN-2017-03789 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
- 批准号:
RGPIN-2017-03789 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
- 批准号:
RGPIN-2017-03789 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Wall-crossing and quantum invariants of Calabi-Yau threefolds
Calabi-Yau 的穿墙和量子不变量有三重
- 批准号:
250164-2012 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Wall-crossing and quantum invariants of Calabi-Yau threefolds
卡拉比-丘的穿墙和量子不变量有三重
- 批准号:
250164-2012 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Wall-crossing and quantum invariants of Calabi-Yau threefolds
卡拉比-丘的穿墙和量子不变量有三重
- 批准号:
250164-2012 - 财政年份:2014
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Wall-crossing and quantum invariants of Calabi-Yau threefolds
卡拉比-丘的穿墙和量子不变量有三重
- 批准号:
429199-2012 - 财政年份:2014
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Wall-crossing and quantum invariants of Calabi-Yau threefolds
卡拉比-丘的穿墙和量子不变量有三重
- 批准号:
250164-2012 - 财政年份:2013
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
- 批准号:
2337107 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
- 批准号:
2340564 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
- 批准号:
2401104 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
- 批准号:
22KJ0715 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
- 批准号:
23K03042 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
- 批准号:
2246832 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant