Modularity of quantum invariants of Calabi-Yau threefolds

Calabi-Yau 量子不变量的模块化性增加了三倍

基本信息

  • 批准号:
    RGPIN-2017-03789
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Background: Calabi-Yau manifolds are central objects of research in both the mathematics of algebraic geometry and the physics of string theory. In the last few decades, subtle invariants of Calabi-Yau manifolds have arisen, often having parallel descriptions in math and physics. In math, the invariants are born from the geometry of various moduli spaces associated to the Calabi-Yau manifold; in physics, they arise out of various quantum field theories associated to the Calabi-Yau manifold. These invariants have turned out to have amazingly rich structure and surprisingly many connections to other branches of mathematics and have consequently become the objects of intense study in the last 15 years. The central instance of such invariants are the so-called Donaldson-Thomas invariants. Geometrically, these are subtle "counts" of sheaves on the manifold, in particular, they can count the ways that curves can sit inside and move around the manifold. Physically, these invariants correspond to counts of D-brane states in a certainly string theory. Roughly speaking, the counts tell about the particle spectrum of the associated quantum theory. In the last few years, a surprising and deep connection between Donaldson-Thomas theory and number theory has emerged. Through a series of computations and conjectures of several researchers, it has been noticed that the Donaldson-Thomas partition function is often given by a Jacobi modular form. The Donaldson-Thomas partition function of a Calabi-Yau manifold encodes all these geometric invariants into a single function, whereas Jacobi modular forms are functions with extraordinary symmetries which arise in number theory and have been studied in various forms for hundreds of years. This amazing connection between geometry and number theory appears to occur for a special class of Calabi-Yau manifolds, namely those which are elliptically fibered. The goal of this project is to refine and deepen our understanding of this conjectural phenomenon both by examining specific geometries and by developing new technology for computing partition functions. Having recently developed a new computational tool which is very effective for these sorts of geometries, I've seen tantalizing hints of how Jacobi forms emerge from the geometry. Fully understanding this phenomenon will shed new light on both the venerable subject of Jacobi modular forms and the newer subject of the geometry and physics of Calabi-Yau manifolds.
背景:卡-丘流形是代数几何数学和弦论物理的中心研究对象。在过去的几十年里,卡-丘流形的微妙不变量已经出现,通常在数学和物理学中有平行的描述。在数学中,不变量产生于与卡-丘流形相关的各种模空间的几何学;在物理学中,它们产生于与卡-丘流形相关的各种量子场论。 这些不变量已经被证明具有令人惊讶的丰富的结构和令人惊讶的许多连接到其他数学分支,并因此成为对象的紧张研究,在过去的15年。这种不变量的中心实例是所谓的唐纳森-托马斯不变量。几何上,这些是流形上层的微妙“计数”,特别是,它们可以计算曲线可以在流形内部和周围移动的方式。物理上,这些不变量对应于一个确定的弦理论中D-膜态的计数。粗略地说,这些计数说明了关联量子理论的粒子谱。 在过去的几年里,唐纳森-托马斯理论和数论之间出现了令人惊讶的深刻联系。通过一些研究者的一系列计算和计算,人们注意到Donaldson-Thomas配分函数通常是由Jacobi模形式给出的。卡拉比-丘流形的唐纳森-托马斯配分函数将所有这些几何不变量编码成一个函数,而雅可比模形式是具有非凡对称性的函数,这些对称性出现在数论中,并且已经以各种形式研究了数百年。几何和数论之间的这种惊人联系似乎发生在一类特殊的卡-丘流形上,即那些椭圆纤维。 该项目的目标是通过研究特定的几何形状和开发计算配分函数的新技术来完善和加深我们对这种几何现象的理解。最近开发了一种新的计算工具,对这类几何非常有效,我已经看到了雅可比形式如何从几何中出现的诱人线索。充分理解这一现象将为雅可比模形式这一古老的课题和卡-丘流形的几何和物理这一较新的课题带来新的启发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bryan, Jim其他文献

Locally Maximally Entangled States of Multipart Quantum Systems
  • DOI:
    10.22331/q-2019-01-06-115
  • 发表时间:
    2019-01-06
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Bryan, Jim;Leutheusser, Samuel;Van Raamsdonk, Mark
  • 通讯作者:
    Van Raamsdonk, Mark
Surface bundles over surfaces of small genus
  • DOI:
    10.2140/gt.2002.6.59
  • 发表时间:
    2002-01-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Bryan, Jim;Donagi, Ron
  • 通讯作者:
    Donagi, Ron
Motivic degree zero Donaldson-Thomas invariants
  • DOI:
    10.1007/s00222-012-0408-1
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Behrend, Kai;Bryan, Jim;Szendroi, Balazs
  • 通讯作者:
    Szendroi, Balazs

Bryan, Jim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bryan, Jim', 18)}}的其他基金

Counting curves with symmetry
计算对称曲线
  • 批准号:
    RGPIN-2022-03691
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
  • 批准号:
    RGPIN-2017-03789
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
  • 批准号:
    RGPIN-2017-03789
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
  • 批准号:
    RGPIN-2017-03789
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
  • 批准号:
    RGPIN-2017-03789
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Wall-crossing and quantum invariants of Calabi-Yau threefolds
Calabi-Yau 的穿墙和量子不变量有三重
  • 批准号:
    250164-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Wall-crossing and quantum invariants of Calabi-Yau threefolds
卡拉比-丘的穿墙和量子不变量有三重
  • 批准号:
    250164-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Wall-crossing and quantum invariants of Calabi-Yau threefolds
卡拉比-丘的穿墙和量子不变量有三重
  • 批准号:
    250164-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Wall-crossing and quantum invariants of Calabi-Yau threefolds
卡拉比-丘的穿墙和量子不变量有三重
  • 批准号:
    429199-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Wall-crossing and quantum invariants of Calabi-Yau threefolds
卡拉比-丘的穿墙和量子不变量有三重
  • 批准号:
    429199-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
  • 批准号:
    50906055
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
广义Besov函数类上的几个逼近特征
  • 批准号:
    10926056
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
  • 批准号:
    30772507
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
驻波场驱动的量子相干效应的研究
  • 批准号:
    10774058
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
量子计算电路的设计和综合
  • 批准号:
    60676020
  • 批准年份:
    2006
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
半导体物理中的非线性偏微分方程组
  • 批准号:
    10541001
  • 批准年份:
    2005
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
  • 批准号:
    30570686
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
  • 批准号:
    2304990
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
  • 批准号:
    2244923
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
  • 批准号:
    2203334
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
RUI: Link Homology Theories and Other Quantum Invariants
RUI:链接同源理论和其他量子不变量
  • 批准号:
    2204386
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Integrability in Gromov--Witten theory
格罗莫夫--维滕理论中的可积性
  • 批准号:
    22K03265
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Knotted surface invariants from 4-dimensional topological quantum field theories
4 维拓扑量子场论的打结表面不变量
  • 批准号:
    532076-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Postdoctoral Fellowships
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
  • 批准号:
    RGPIN-2017-03789
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Adiabatic Limits of Quantum Symplectic Invariants
量子辛不变量的绝热极限
  • 批准号:
    2105417
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
c2 invariants in quantum field theory
量子场论中的 c2 不变量
  • 批准号:
    562682-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    University Undergraduate Student Research Awards
Asymptotics of Quantum Invariants
量子不变量的渐近
  • 批准号:
    2005656
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了