Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models

不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用

基本信息

  • 批准号:
    RGPIN-2018-04177
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This proposed research program mainly deals with systems of parabolic partial differential equations (SPPDEs) or parabolic partial differential inequalities (SPPDIs) involving uniformly elliptic operators (UEOs) with first boundary operators (FBOs). These systems are often used to model various population densities in population dynamics. The UEOs and FBOs contain the Laplacian operators, and the Dirichlet and Neumann boundary operators, respectively, as special cases. The UEOs include the diffusion terms and the terms representing the drift rates of the population due to wind, current or environmental gradients. The nonlinearities (or reaction terms) are either nonnegative or change signs. These models play important roles in modern applicable mathematics. One of the major concerns in population dynamics is to understand the spatial and temporal behaviors of interacting species in ecological systems. Some important topics of the problem are to investigate under what circumstances the species either coexist or become extinct, and to determine whether the species in the system can persist at a coexistence state. Mathematically, these topics lead to study the existence, co-existence, nonexistence and uniqueness of the positive steady-state (classic or weak) solutions of the SPPDE (or SPPDIs) models, and the large time behaviors of positive solutions for these models. There are many population models such as various Volterra-Lotka competition models and predator-prey models incorporating harvesting rates, Allee effect or prey refuge, which have been widely studied in the literature including my own research. But due to the restriction of the existing theoretical tools, the existing results on the existence, co-existence, nonexistence and uniqueness of the positive steady-state solutions, and the large time behaviors of positive solutions for the SPPDE models provide insufficient understanding of the spatial and temporal behaviors of interacting species. Also, there are some important population models governed by difference equations such as discrete population models with Ricker-or Hassell-type functions and their generalizations such as Ricker functions with Allee effect, which have been widely studied in the literature. But there is little study on these populations modeled by the SPPDEs. The objectives of the proposed research program are (1) to search for new ideas and approaches to improve the existing theories such as fixed point index theories and apply the new theoretical results to study the SPPDEs or SPPDIs, and a variety of population models mentioned above; and (2) to generalize the difference equation population models to the SPPDE population models, which is new. The proposed research program will enrich and develop the theories of both modern partial differential equations or inequalities, nonlinear analysis and their applications to population dynamics.
该拟议的研究计划主要涉及抛物线偏微分方程(SPPDES)或抛物线部分差分不平等(SPPDIS)的系统,该系统涉及与第一边界运营商(FBO)均匀椭圆运算符(UEOS)的系统。这些系统通常用于对种群动态的各种人口密度进行建模。 UEOS和FBO包含Laplacian操作员,分别是Dirichlet和Neumann边界运营商作为特殊情况。 UEO包括由于风,当前或环境梯度而导致人口漂移率的扩散项和术语。非线性(或反应术语)是无负或变化符号。这些模型在现代适用数学中起着重要作用。 人口动态的主要关注点之一是了解生态系统中相互作用物种的空间和时间行为。该问题的一些重要主题是在哪种情况下进行研究,该物种可以共存或灭绝,并确定系统中的物种是否可以持续在共存状态下。从数学上讲,这些主题导致研究了SPPDE(或SPPDIS)模型的积极稳态(经典或弱)解决方案的存在,共存,不存在和独特性,以及这些模型积极解决方案的较大时间行为。 有许多人口模型,例如各种Volterra-Lotka竞争模型和结合收获率,Allee效果或猎物避难所的Predator-Prey模型,这些模型在文献中已广泛研究,包括我自己的研究。但是,由于对现有的理论工具的限制,现有的结果,对积极稳态解决方案的存在,不存在和唯一性以及SPPDE模型积极解决方案的巨大时间行为提供了对相互作用物种的空间和时间行为的不足。此外,还有一些重要的人群模型,这些模型受差异方程式控制的,例如具有ricker-or hassell型功能的离散人群模型及其概括,例如带有Alee效应的Ricker功能,在文献中已广泛研究。但是几乎没有关于由SPPDE建模的人群的研究。 拟议的研究计划的目标是(1)寻找改善现有理论(例如固定点索引理论)的新思想和方法,并应用新的理论结果来研究SPPDES或SPPDIS,以及上面提到的各种人群模型; (2)将差异方程人群模型推广到SPDE人群模型,这是新的。 拟议的研究计划将丰富并发展现代部分差分方程或不平等,非线性分析及其对人口动态的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lan, Kunquan其他文献

A variational inequality index for condensing maps in Hilbert spaces and applications to semilinear elliptic inequalities
希尔伯特空间中压缩映射的变分不等式指数及其在半线性椭圆不等式中的应用
A new Bihari inequality and initial value problems of first order fractional differential equations.
EQUIVALENCE OF HIGHER ORDER LINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL AND INTEGRAL EQUATIONS
Compactness of Riemann-Liouville fractional integral operators
Linear first order Riemann-Liouville fractional differential and perturbed Abel's integral equations

Lan, Kunquan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lan, Kunquan', 18)}}的其他基金

Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Differential equations and elliptic inequalitties
微分方程和椭圆不等式
  • 批准号:
    250187-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

载体再生型固定化脂肪酶在废油制备生物柴中的循环应用研究
  • 批准号:
    22369014
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
木质素负载溶磷菌固定化材料对水稻生态系统磷与镉的分配固定机制
  • 批准号:
    42307022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微生物固定二氧化碳合成琥珀酸的代谢流调控及其机制解析
  • 批准号:
    22378166
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于事件触发的固定时间分布式优化算法研究及应用
  • 批准号:
    12301652
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
重组木细胞多尺度结构特征对形变固定的作用机制及调控研究
  • 批准号:
    32301523
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Infrared and ultraviolet fixed point behavior of gauge theories and fractal structures in quantum field theories; collaborative research at l'Univ. Louis Pasteur, Strasbourg, France
量子场论中规范理论和分形结构的红外和紫外定点行为;
  • 批准号:
    160725-1993
  • 财政年份:
    1993
  • 资助金额:
    $ 1.31万
  • 项目类别:
    International Collaborative Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了