Elliptic partial differential equations with applications to population models with harvesting rates

椭圆偏微分方程及其在具有收获率的群体模型中的应用

基本信息

  • 批准号:
    250187-2013
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

Population models for species are used to study the behaviors of the populations or the interaction of two or more species. One important topic is to determine under what circumstances the species either survive or go extinct. According to human needs, the exploitation of biological resources and the harvesting of populations are commonly practiced in fishery, forestry, and wildlife management. To predict whether species will become extinct and to obtain insight into the optimal management of renewable resources, one needs to consider models which incorporate harvesting rates. The aim is to determine a harvestable quantity of the species without having the population die out. According to Clark's book (C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources, second edition, John Wiley & Sons, New York, 1990), the management of renewable resources is thought to be based on the maximum sustainable yield (MSY). If the populations of the species are harvested by some process of over-exploitation (that is, harvesting rate is strictly greater than the MSY), then the species could become extinct.
物种的种群模型用于研究种群的行为或两个或更多物种的相互作用。一个重要的话题是在什么情况下确定该物种生存或灭绝的情况。根据人类的需求,在渔业,林业和野生动植物管理中,通常对生物资源的剥削和人群的收获通常进行。为了预测物种是否会灭绝并洞悉可再生资源的最佳管理,需要考虑包含收获率的模型。目的是确定物种的可收获数量,而不会使种群死亡。根据克拉克的书(C. W. Clark,《数学生物经济学》,《可再生资源的最佳管理》,第二版,John Wiley&Sons,New York,1990年),可再生资源的管理被认为是基于最大的可持续产量(MSY)。如果该物种的种群是通过某种过度开发的过程收获的(即,收获率严格大于MSY),那么该物种可能会灭绝。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lan, Kunquan其他文献

A variational inequality index for condensing maps in Hilbert spaces and applications to semilinear elliptic inequalities
希尔伯特空间中压缩映射的变分不等式指数及其在半线性椭圆不等式中的应用
A new Bihari inequality and initial value problems of first order fractional differential equations.
EQUIVALENCE OF HIGHER ORDER LINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL AND INTEGRAL EQUATIONS
Compactness of Riemann-Liouville fractional integral operators
Linear first order Riemann-Liouville fractional differential and perturbed Abel's integral equations

Lan, Kunquan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lan, Kunquan', 18)}}的其他基金

Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Differential equations and elliptic inequalitties
微分方程和椭圆不等式
  • 批准号:
    250187-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

部分双曲微分同胚中的拓扑与度量性质的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
发展型偏微分方程组中基于部分观测数据的系数辨识问题
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
部分双曲系统的拓扑与遍历论性质
  • 批准号:
    11871120
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
部分双曲系统的持续传递性
  • 批准号:
    11701015
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
部分信息下带马尔科夫链的正倒向随机系统最优控制理论及其应用
  • 批准号:
    61573217
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
  • 批准号:
    2236491
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
  • 批准号:
    2247185
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了