Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
基本信息
- 批准号:250187-2013
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Population models for species are used to study the behaviors of the populations or the interaction of two or more species. One important topic is to determine under what circumstances the species either survive or go extinct. According to human needs, the exploitation of biological resources and the harvesting of populations are commonly practiced in fishery, forestry, and wildlife management. To predict whether species will become extinct and to obtain insight into the optimal management of renewable resources, one needs to consider models which incorporate harvesting rates. The aim is to determine a harvestable quantity of the species without having the population die out. According to Clark's book (C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources, second edition, John Wiley & Sons, New York, 1990), the management of renewable resources is thought to be based on the maximum sustainable yield (MSY). If the populations of the species are harvested by some process of over-exploitation (that is, harvesting rate is strictly greater than the MSY), then the species could become extinct. Mathematically, models of populations of species are often governed by one or more first order ordinary differential equations or by parabolic or elliptic partial differential equations (PDEs) including Laplacian boundary value problems. These models play an important role in modern applicable mathematics. The long-term objectives of my research program are to propose and analyze new models arising in mathematical biology and ecology, and establish new theories in differential equations and apply these and other known theories to treat these models. My short term objectives are to rigorously analyze some models such as population models of single species including diffusive Nicholson blowfly models, and of two species such as predator-prey models and chemostat models in PDE forms. Emphasis will be placed on PDE models with harvesting rates and finding the MSYs of these models since there is little study on the MSYs of the PDE models even in one-dimensional cases. The main difficulty is that maximum principles cannot be applied.
种群模型用于研究种群的行为或两个或多个种群的相互作用。一个重要的课题是确定在什么情况下物种生存或灭绝。根据人类的需要,在渔业、林业和野生动物管理中通常会进行生物资源的开发和种群的收获。为了预测物种是否会灭绝,并深入了解可再生资源的最佳管理,人们需要考虑包含收获率的模型。其目的是在不使种群灭绝的情况下确定物种的可收获量。根据克拉克的书(C。W. Clark,Mathematical Bioeconomics,The Optimal Management of Renewable Resources,second edition,John Wiley & Sons,纽约,1990),可再生资源的管理被认为是基于最大可持续产量(MSY)。如果物种的种群被过度开发过程所收获(也就是说,收获率严格大于MSY),那么该物种可能会灭绝。在数学上,物种种群模型通常由一个或多个一阶常微分方程或抛物型或椭圆型偏微分方程(PDE)(包括拉普拉斯边值问题)控制。这些模型在现代应用数学中起着重要的作用。我的研究计划的长期目标是提出和分析数学生物学和生态学中出现的新模型,并建立微分方程的新理论,并应用这些理论和其他已知的理论来处理这些模型。我的短期目标是严格分析一些模型,例如单物种的种群模型,包括扩散的Nicholson绿头苍蝇模型,以及两个物种的种群模型,例如偏微分方程形式的捕食者-被捕食者模型和恒化器模型。重点将放在PDE模型的收获率,并找到这些模型的MSY,因为有很少的研究偏微分方程模型的MSY,即使在一维的情况下。主要的困难是最大原则不能适用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan, Kunquan其他文献
A variational inequality index for condensing maps in Hilbert spaces and applications to semilinear elliptic inequalities
希尔伯特空间中压缩映射的变分不等式指数及其在半线性椭圆不等式中的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Lan, Kunquan;Lin, Wei - 通讯作者:
Lin, Wei
A new Bihari inequality and initial value problems of first order fractional differential equations.
- DOI:
10.1007/s13540-023-00152-5 - 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
Lan, Kunquan;Webb, J. R. L. - 通讯作者:
Webb, J. R. L.
Compactness of Riemann-Liouville fractional integral operators
- DOI:
10.14232/ejqtde.2020.1.84 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:1.1
- 作者:
Lan, Kunquan - 通讯作者:
Lan, Kunquan
EQUIVALENCE OF HIGHER ORDER LINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL AND INTEGRAL EQUATIONS
- DOI:
10.1090/proc/15169 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:1
- 作者:
Lan, Kunquan - 通讯作者:
Lan, Kunquan
SYSTEMS OF SINGULAR INTEGRAL EQUATIONS AND APPLICATIONS TO EXISTENCE OF REVERSED FLOW SOLUTIONS OF FALKNER-SKAN EQUATIONS
奇异积分方程组及其在Falkner-SKAN方程逆流解存在性中的应用
- DOI:
10.3934/cpaa.2013.12.2465 - 发表时间:
2013-05 - 期刊:
- 影响因子:1
- 作者:
Yang, Guangchong;Lan, Kunquan - 通讯作者:
Lan, Kunquan
Lan, Kunquan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan, Kunquan', 18)}}的其他基金
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
- 批准号:
250187-2013 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
- 批准号:
250187-2013 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
- 批准号:
250187-2013 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
- 批准号:
250187-2013 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Differential equations and elliptic inequalitties
微分方程和椭圆不等式
- 批准号:
250187-2008 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硝态氮氨化菌群富集及其与部分反硝化协同的机制研究
- 批准号:51808045
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
微分动力系统的测度和熵
- 批准号:11101447
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
部分双曲系统的遍历性研究
- 批准号:11001284
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
低温绝缘材料局部放电特性与电老化机理的研究
- 批准号:50577038
- 批准年份:2005
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
- 批准号:
2236491 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
An efficient, accurate and robust solution technique for variable coefficient elliptic partial differential equations in complex geometries
复杂几何中变系数椭圆偏微分方程的高效、准确和稳健的求解技术
- 批准号:
2110886 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
2123224 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant