Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models

不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用

基本信息

  • 批准号:
    RGPIN-2018-04177
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This proposed research program mainly deals with systems of parabolic partial differential equations (SPPDEs) or parabolic partial differential inequalities (SPPDIs) involving uniformly elliptic operators (UEOs) with first boundary operators (FBOs). These systems are often used to model various population densities in population dynamics. The UEOs and FBOs contain the Laplacian operators, and the Dirichlet and Neumann boundary operators, respectively, as special cases. The UEOs include the diffusion terms and the terms representing the drift rates of the population due to wind, current or environmental gradients. The nonlinearities (or reaction terms) are either nonnegative or change signs. These models play important roles in modern applicable mathematics. One of the major concerns in population dynamics is to understand the spatial and temporal behaviors of interacting species in ecological systems. Some important topics of the problem are to investigate under what circumstances the species either coexist or become extinct, and to determine whether the species in the system can persist at a coexistence state. Mathematically, these topics lead to study the existence, co-existence, nonexistence and uniqueness of the positive steady-state (classic or weak) solutions of the SPPDE (or SPPDIs) models, and the large time behaviors of positive solutions for these models. There are many population models such as various Volterra-Lotka competition models and predator-prey models incorporating harvesting rates, Allee effect or prey refuge, which have been widely studied in the literature including my own research. But due to the restriction of the existing theoretical tools, the existing results on the existence, co-existence, nonexistence and uniqueness of the positive steady-state solutions, and the large time behaviors of positive solutions for the SPPDE models provide insufficient understanding of the spatial and temporal behaviors of interacting species. Also, there are some important population models governed by difference equations such as discrete population models with Ricker-or Hassell-type functions and their generalizations such as Ricker functions with Allee effect, which have been widely studied in the literature. But there is little study on these populations modeled by the SPPDEs. The objectives of the proposed research program are (1) to search for new ideas and approaches to improve the existing theories such as fixed point index theories and apply the new theoretical results to study the SPPDEs or SPPDIs, and a variety of population models mentioned above; and (2) to generalize the difference equation population models to the SPPDE population models, which is new. The proposed research program will enrich and develop the theories of both modern partial differential equations or inequalities, nonlinear analysis and their applications to population dynamics.
本研究计划主要研究包含一致椭圆算子(UEO)和第一边界算子(FBO)的抛物型偏微分方程(SPPDE)或抛物型偏微分不等式(SPPDI)系统。这些系统经常被用来模拟人口动态中的各种人口密度。UEO和FBO分别包含拉普拉斯算子、Dirichlet和Neumann边界算子作为特例。UEO包括扩散项和代表由于风、水流或环境梯度引起的种群漂移率的项。非线性(或反应项)是非负的或变化的符号。这些模型在现代应用数学中起着重要的作用。 种群动力学研究的主要内容之一是了解生态系统中相互作用物种的时空行为。该问题的一些重要课题是研究在什么样的环境下物种是共存还是灭绝,以及系统中的物种是否能持续共存。在数学上,这些主题导致研究SPPDE(或SPPDI)模型的正平衡态(经典或弱)解的存在性,共存性,不存在性和唯一性,以及这些模型的正解的大时间行为。 有许多种群模型,如各种Volterra-Lotka竞争模型和捕食者-食饵模型的收获率,Allee效应或猎物避难所,已被广泛研究的文献,包括我自己的研究。但由于现有理论工具的限制,现有的关于SPPDE模型正平衡解的存在性、共存性、不存在性和唯一性以及正解的大时间行为的结果对相互作用种群的时空行为的理解还不够深入.此外,还有一些重要的由差分方程控制的种群模型,如具有Ricker或Hassell型函数的离散种群模型及其推广,如具有Allee效应的Ricker函数,这些模型在文献中得到了广泛的研究。但是,很少有研究这些人口的模拟的SPDEs。 本研究计划的目标是:(1)寻找新的思想和方法来改进现有的理论,如不动点指数理论,并将新的理论结果应用于研究SPPDE或SPPDIs,以及上述各种人口模型;(2)将差分方程人口模型推广到SPPDE人口模型,这是新的。 该研究项目将丰富和发展现代偏微分方程或不等式理论、非线性分析及其在种群动力学中的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lan, Kunquan其他文献

A variational inequality index for condensing maps in Hilbert spaces and applications to semilinear elliptic inequalities
希尔伯特空间中压缩映射的变分不等式指数及其在半线性椭圆不等式中的应用
A new Bihari inequality and initial value problems of first order fractional differential equations.
Compactness of Riemann-Liouville fractional integral operators
EQUIVALENCE OF HIGHER ORDER LINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL AND INTEGRAL EQUATIONS
SYSTEMS OF SINGULAR INTEGRAL EQUATIONS AND APPLICATIONS TO EXISTENCE OF REVERSED FLOW SOLUTIONS OF FALKNER-SKAN EQUATIONS
奇异积分方程组及其在Falkner-SKAN方程逆流解存在性中的应用

Lan, Kunquan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lan, Kunquan', 18)}}的其他基金

Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic partial differential equations with applications to population models with harvesting rates
椭圆偏微分方程及其在具有收获率的群体模型中的应用
  • 批准号:
    250187-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Differential equations and elliptic inequalitties
微分方程和椭圆不等式
  • 批准号:
    250187-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

抗砷性微生物与零价铁协同作用去除砷污染机理研究
  • 批准号:
    21107100
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exact Formulas for the KPZ Fixed Point and the Directed Landscape
KPZ 不动点和有向景观的精确公式
  • 批准号:
    2246683
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
On the convergence rate improvement of fixed point algorithms and its applications
论定点算法收敛速度的提高及其应用
  • 批准号:
    23K03235
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The fixed point of the KPZ universality
KPZ 普适性的不动点
  • 批准号:
    EP/X03237X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
場の量子論における双対性の弦理論による理解
使用弦理论理解量子场论中的对偶性
  • 批准号:
    22KF0230
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
調波法とFixed-Point法を併用した磁界解析によるインバータ用インダクタの解析
使用谐波法和定点法相结合的磁场分析来分析逆变器的电感器
  • 批准号:
    23K03820
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homotopical Methods in Fixed Point Theory
不动点理论中的同伦方法
  • 批准号:
    2153772
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry in projection methods and fixed-point theory
投影方法和不动点理论中的几何
  • 批准号:
    DP200100124
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
  • 批准号:
    RGPIN-2018-04177
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Riemannian Fixed Point Optimization Algorithm and Its Application to Machine Learning
黎曼不动点优化算法及其在机器学习中的应用
  • 批准号:
    21K11773
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了