Hopf algebras, operator theory, and algebraic combinatorics

Hopf 代数、算子理论和代数组合

基本信息

  • 批准号:
    RGPIN-2014-06515
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

I am most interested in problems involving interplay between several branches of mathematics. There is an abundance of such problems involving Hopf algebras, linear algebra, and combinatorics. Below I mention a few. (1) I plan to continue working on open questions ragarding collections of operators acting on a Banach space (of either finite or infinite dimension). I will focus on questions where not only analytic, but also algebraic, geometric, and combinatorial techniques can be applied. Many of such problems involve the study of simultaneous reducibility, triangularizability, and transitivity-type properties of collections of matrices. A collection of n-by-n matrices is said to be triangularizable if it can be transformed by a simultaneous similarity to become a collection of upper triangular matrices. Collections in questions often posses an algebraic structure such as, for example, the structure of a semigroup (if two matrices belong to the collection then their product must also belong). Sufficient conditions that guarantee triangularizability of semigroups can often be phrased in terms of the eigenvalues of matrices involved. Recently it has been shown that in many cases an exact condition (for example, if all eigenvalues of AB-BA, for all matrices A,B in some semigroup of matrices, are 0, then the semigroup in question is triangularizable) can be replaced by an approximate version (for certain semigroups of matrices it is enough to assume that all eigenvalues of AB-BA are small to ensure triangularizability). (2) Hopf algebras are algebraic structures arising in numerous parts of mathematics, as well as in physics. Examples of Hopf algebras include group algebras, universal envelopes of Lie algebras, algebras of representative functions on Lie groups, coordinate algebras of algebraic groups, algebras of symmetric and quasi-symmetric functions, and quantum groups. I plan to study the algebraic structure of Hopf algebras in order to classify them, construct new interesting examples, and apply them to problems in algebra, analysis, and combinatorics. I also plan to study Hopf algebras from combinatorial point of view. In combinatorics they are usually used to encode assembly and disassembly of discrete structures. (3) One of the areas where my interests in algebra, analysis, and combinatorics are combined is free probability. Free probability is a mathematical theory that studies non-commuting random variables. The free independence is an analogue of the classical notion of independence, and is connected with free products of algebras. It has many applications in the theory of operator algebras as well as in the theory of random matrices (which have become very important because of, among other things, their applications in physics and engineering). A typical type of question one asks in the random matrix theory is as follows: "What can we say about the eigenvalues of a matrix that resulted from some known random process?" If matrices are sufficiently large and can be decomposed as sums or products of well understood matrices, then free probability techniques can help answer such questions. In joint work with A. Nica we have constructed a combinatorial Hopf algebra which can be used to study joint distributions of k-tuples in a noncommutative probability space. This approach exposed numerous connections with other branches of mathematics (diagonal harmonics, represention theory of symmetric groups, classical probability, to name a few) and opened numerous new avenues of possible research which we hope to pursue.
我对涉及数学几个分支之间相互影响的问题最感兴趣。有很多这样的问题,涉及Hopf代数、线性代数和组合学。下面我要提几点。 (1)我计划继续研究公开问题,收集作用于Banach空间(有限维或无限维)上的算子集合。我将把重点放在不仅可以应用分析技术,而且可以应用代数、几何和组合技术的问题上。许多这样的问题涉及矩阵集合的同时可约性、三角化和传递型性质的研究。如果n乘n矩阵的集合可以通过同时相似变换成为上三角矩阵的集合,则称它是可三角化的。问题中的集合通常具有代数结构,例如,半群的结构(如果两个矩阵属于该集合,则它们的乘积也必须属于该集合)。保证半群可三角化的充分条件通常可以用所涉及的矩阵的特征值来表示。最近已经证明,在许多情况下,一个精确的条件(例如,如果AB-BA的所有特征值,对于某个矩阵半群中的所有矩阵A、B都是0,则该半群是可三角化的)可以用一个近似形式来代替(对于某些矩阵半群,足以假设AB-BA的所有特征值都很小,以确保可三角化)。 (2)Hopf代数是出现在数学和物理中的许多部分的代数结构。Hopf代数的例子包括群代数、李代数的泛包络、李群上的代表函数的代数、代数群的坐标代数、对称和拟对称函数的代数以及量子群。我计划研究Hopf代数的代数结构,以便对它们进行分类,构造新的有趣的例子,并将它们应用于代数、分析和组合学中的问题。我还打算从组合的角度研究Hopf代数。在组合学中,它们通常用来编码离散结构的装配和拆卸。 (3)我对代数、分析和组合学的兴趣结合在一起的一个领域是自由概率。自由概率是一种研究非通勤随机变量的数学理论。自由独立性是经典的独立性概念的类比,它与代数的自由积有关。它在算子代数理论和随机矩阵理论中有许多应用(这些理论变得非常重要,因为它们在物理和工程中的应用)。在随机矩阵理论中,一个典型的问题是:“关于某个已知随机过程产生的矩阵的特征值,我们能说些什么呢?”如果矩阵足够大,并且可以分解为众所周知的矩阵的和或乘积,那么自由概率技术可以帮助回答这些问题。在与A.Nica的合作中,我们构造了一个组合Hopf代数,它可以用来研究非对易概率空间中k-字节组的联合分布。这种方法暴露了与其他数学分支(对角调和、对称群表示理论、经典概率论等)的许多联系,并开辟了许多我们希望追求的可能研究的新途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mastnak, Mitja其他文献

Mastnak, Mitja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mastnak, Mitja', 18)}}的其他基金

Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operators and combinatorics
Hopf 代数、运算符和组合数学
  • 批准号:
    371994-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operators and combinatorics
Hopf 代数、运算符和组合数学
  • 批准号:
    371994-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
  • 批准号:
    23K03151
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
  • 批准号:
    2247202
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Conference: Groundwork for Operator Algebras Lecture Series 2023
会议:2023 年算子代数系列讲座的基础
  • 批准号:
    2247796
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Conference: East Coast Operator Algebras Symposium 2023
会议:2023 年东海岸算子代数研讨会
  • 批准号:
    2321632
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
  • 批准号:
    2247322
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
  • 批准号:
    RGPIN-2022-03600
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Conference: Groundwork for Operator Algebras Lecture Series (GOALS) 2022
会议:算子代数基础讲座系列 (GOALS) 2022
  • 批准号:
    2154574
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
  • 批准号:
    2200862
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Operator algebras and operator theory
算子代数和算子理论
  • 批准号:
    RGPIN-2018-03973
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了