Hopf algebras, operator theory, and algebraic combinatorics

Hopf 代数、算子理论和代数组合

基本信息

  • 批准号:
    RGPIN-2014-06515
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

I am most interested in problems involving interplay between several branches of mathematics. There is an abundance of such problems involving Hopf algebras, linear algebra, and combinatorics. Below I mention a few. (1) I plan to continue working on open questions ragarding collections of operators acting on a Banach space (of either finite or infinite dimension). I will focus on questions where not only analytic, but also algebraic, geometric, and combinatorial techniques can be applied. Many of such problems involve the study of simultaneous reducibility, triangularizability, and transitivity-type properties of collections of matrices. A collection of n-by-n matrices is said to be triangularizable if it can be transformed by a simultaneous similarity to become a collection of upper triangular matrices. Collections in questions often posses an algebraic structure such as, for example, the structure of a semigroup (if two matrices belong to the collection then their product must also belong). Sufficient conditions that guarantee triangularizability of semigroups can often be phrased in terms of the eigenvalues of matrices involved. Recently it has been shown that in many cases an exact condition (for example, if all eigenvalues of AB-BA, for all matrices A,B in some semigroup of matrices, are 0, then the semigroup in question is triangularizable) can be replaced by an approximate version (for certain semigroups of matrices it is enough to assume that all eigenvalues of AB-BA are small to ensure triangularizability). (2) Hopf algebras are algebraic structures arising in numerous parts of mathematics, as well as in physics. Examples of Hopf algebras include group algebras, universal envelopes of Lie algebras, algebras of representative functions on Lie groups, coordinate algebras of algebraic groups, algebras of symmetric and quasi-symmetric functions, and quantum groups. I plan to study the algebraic structure of Hopf algebras in order to classify them, construct new interesting examples, and apply them to problems in algebra, analysis, and combinatorics. I also plan to study Hopf algebras from combinatorial point of view. In combinatorics they are usually used to encode assembly and disassembly of discrete structures. (3) One of the areas where my interests in algebra, analysis, and combinatorics are combined is free probability. Free probability is a mathematical theory that studies non-commuting random variables. The free independence is an analogue of the classical notion of independence, and is connected with free products of algebras. It has many applications in the theory of operator algebras as well as in the theory of random matrices (which have become very important because of, among other things, their applications in physics and engineering). A typical type of question one asks in the random matrix theory is as follows: "What can we say about the eigenvalues of a matrix that resulted from some known random process?" If matrices are sufficiently large and can be decomposed as sums or products of well understood matrices, then free probability techniques can help answer such questions. In joint work with A. Nica we have constructed a combinatorial Hopf algebra which can be used to study joint distributions of k-tuples in a noncommutative probability space. This approach exposed numerous connections with other branches of mathematics (diagonal harmonics, represention theory of symmetric groups, classical probability, to name a few) and opened numerous new avenues of possible research which we hope to pursue.
我最感兴趣的是涉及几个数学分支之间相互作用的问题。有很多这样的问题涉及到霍普夫代数、线性代数和组合学。下面我将提到一些。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mastnak, Mitja其他文献

Mastnak, Mitja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mastnak, Mitja', 18)}}的其他基金

Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operators and combinatorics
Hopf 代数、运算符和组合数学
  • 批准号:
    371994-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operators and combinatorics
Hopf 代数、运算符和组合数学
  • 批准号:
    371994-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
  • 批准号:
    2247202
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
  • 批准号:
    23K03151
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Groundwork for Operator Algebras Lecture Series 2023
会议:2023 年算子代数系列讲座的基础
  • 批准号:
    2247796
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Conference: East Coast Operator Algebras Symposium 2023
会议:2023 年东海岸算子代数研讨会
  • 批准号:
    2321632
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
  • 批准号:
    2247322
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Conference: Groundwork for Operator Algebras Lecture Series (GOALS) 2022
会议:算子代数基础讲座系列 (GOALS) 2022
  • 批准号:
    2154574
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
  • 批准号:
    2200862
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Operator algebras and operator theory
算子代数和算子理论
  • 批准号:
    RGPIN-2018-03973
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
  • 批准号:
    RGPIN-2022-03600
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了