Bayesian integrative approaches for high-dimensional imaging and genomic data
高维成像和基因组数据的贝叶斯综合方法
基本信息
- 批准号:RGPIN-2019-04810
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary objective of this proposal is the development of innovative Bayesian statistical frameworks for high throughput imaging (radiomic) and genomic data (e.g. gene expression, pathway activities, Methylation data and microRNA expression, etc..) arising in modern biomedical studies. The key foci are principled techniques for combining radiomic and genomic information to provide insight into the underlying biological mechanisms, and the development of reliable prediction models for relevant clinical outcomes to aid the practice of translational medicine. The work is motivated by the availability of these two data types on the same set of subjects. Genomic data are obtained from The Cancer Genome Atlas (TCGA) project. Patient image data and corresponding clinical data are extracted from The Cancer Imaging Archive. Imaging data have been processed to obtain a measure of image-derived heterogeneity for each patient called gray-level co-occurrence matrix (GLCM). Current approaches have focused on deriving summary statistics (e.g. entropy, energy etc) based on the GLCM, and potentially overlook other structural properties in the GLCM. In this program, we aim to investigate a framework that uses the GLCM both as an explicit covariate and endophenotype rather than restricting its use to some derived summary statistics. The proposed methods and computational tools are broadly applicable in all types of disease or in a variety of contexts with similar data (e.g: glioma, neurocognitive impairment, Alzheimers disease). The proposed research is positioned to advance the field of imaging-genomic integration in two directions; it responds to i) important scientific questions raised by these large-scale studies; ii) to the need for efficient statistical methodologies to help answer those questions. More specifically, we will develop innovative Bayesian statistical frameworks that define new prior distributions for integrating high-throughput radiomic and genomic datasets, account for the dependence between the data-sets. we will also develop computationally efficient and freely accessible software for the proposed methods. The methods would be able to identify important markers (e.g genes, imaging features) that are associated with clinical outcomes. Moreover, we expect to improve the prediction performance of those outcomes. This program, which is within the Natural Sciences and Engineering field, has diverse and interdisciplinary downstream applications. Hence, results from the application of our methods are expected to have an important positive impact clinically because the identified potential markers are likely to provide new data and methods for the development of integrative analysis methods that enable assessment of likely disease evolution and corresponding personalized treatment strategies.
这项建议的主要目标是为高通量成像(放射学)和基因组数据(例如基因表达、途径活动、甲基化数据和微RNA表达等)开发创新的贝叶斯统计框架。出现在现代生物医学研究中。重点是结合放射学和基因组信息以深入了解潜在的生物学机制的原则性技术,以及为相关临床结果开发可靠的预测模型以帮助转化医学实践。这项工作的动机是在同一组主题上提供这两种数据类型。基因组数据来自癌症基因组图谱(TCGA)项目。患者图像数据和相应的临床数据是从癌症影像档案中提取的。成像数据已被处理,以获得每个患者图像衍生的异质性的度量,称为灰度共生矩阵(GLCM)。当前的方法侧重于基于GLCM导出汇总统计信息(例如,熵、能量等),并且可能忽略了GLCM中的其他结构属性。在这个项目中,我们的目标是研究一个框架,该框架同时使用GLCM作为显性协变量和内表型,而不是将其限制在一些派生的汇总统计数据上。所提出的方法和计算工具广泛适用于所有类型的疾病或具有相似数据的各种背景(例如:神经胶质瘤、神经认知障碍、阿尔茨海默病)。拟议的研究旨在朝两个方向推进成像-基因组整合领域;它回应了i)这些大规模研究提出的重要科学问题;ii)需要有效的统计方法来帮助回答这些问题。更具体地说,我们将开发创新的贝叶斯统计框架,定义新的先验分布,以整合高通量放射和基因组数据集,考虑到数据集之间的相关性。我们还将为建议的方法开发计算效率高且可免费访问的软件。这些方法将能够识别与临床结果相关的重要标记(例如基因、成像特征)。此外,我们希望提高这些结果的预测性能。该项目属于自然科学和工程领域,具有多样化和跨学科的下游应用。因此,我们方法的应用结果有望在临床上产生重要和积极的影响,因为识别的潜在标记物可能为开发综合分析方法提供新的数据和方法,从而能够评估可能的疾病演变和相应的个性化治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ChekouoTekougang, Thierry其他文献
ChekouoTekougang, Thierry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ChekouoTekougang, Thierry', 18)}}的其他基金
Bayesian integrative approaches for high-dimensional imaging and genomic data
高维成像和基因组数据的贝叶斯综合方法
- 批准号:
RGPIN-2019-04810 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Bayesian integrative approaches for high-dimensional imaging and genomic data
高维成像和基因组数据的贝叶斯综合方法
- 批准号:
RGPIN-2019-04810 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Bayesian integrative approaches for high-dimensional imaging and genomic data
高维成像和基因组数据的贝叶斯综合方法
- 批准号:
DGECR-2019-00080 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
Bayesian integrative approaches for high-dimensional imaging and genomic data
高维成像和基因组数据的贝叶斯综合方法
- 批准号:
RGPIN-2019-04810 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
建立integrative分析新策略挖掘肺腺癌致癌相关关键分子
- 批准号:31801123
- 批准年份:2018
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Chinese Journal of Integrative Medicine
- 批准号:81224004
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Integrative Approaches for Cancer Survivorship: A Multi-Site Feasibility and Acceptability Study
癌症生存的综合方法:多中心可行性和可接受性研究
- 批准号:
10729453 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Integrative approaches to advancing retention, engagement, and graduation in STEM students across a multi-campus open-access institution
在多校区开放获取机构中采用综合方法提高 STEM 学生的保留率、参与度和毕业率
- 批准号:
2221026 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Integrative Approaches for Characterising Small-Molecule Binding to Disordered Proteins
表征小分子与无序蛋白质结合的综合方法
- 批准号:
BB/X009955/1 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Fellowship
Integrative computational-experimental approaches to stratify monogenic disease risk
综合计算实验方法对单基因疾病风险进行分层
- 批准号:
10889297 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Integrative approaches defining the ontogeny, maintenance, and immune response dynamics of marginal-zone B cells
定义边缘区 B 细胞个体发育、维持和免疫反应动力学的综合方法
- 批准号:
10660534 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Integrative data science approaches for rare disease discovery in health records
用于发现健康记录中罕见疾病的综合数据科学方法
- 批准号:
10626148 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Integrative approaches to understand systemic lupus erythematosus etiology in trans-ancestry genetic studies
跨祖先遗传学研究中了解系统性红斑狼疮病因的综合方法
- 批准号:
10577502 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Integrative approaches to understand systemic lupus erythematosus etiology in trans-ancestry genetic studies
跨祖先遗传学研究中了解系统性红斑狼疮病因的综合方法
- 批准号:
10708065 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Integrative approaches with applications in eQTL analysis and randomized trials
综合方法在 eQTL 分析和随机试验中的应用
- 批准号:
2210860 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
New Bayesian statistical mechanical approaches to integrative structural biology using unassigned NMR and mass spectrometry
使用未分配的核磁共振和质谱进行综合结构生物学的新贝叶斯统计机械方法
- 批准号:
RGPIN-2022-03287 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual